Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Endocrinol ; 27(9): 1429-41, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23885094

RESUMO

In hormone-dependent tissues such as breast and ovary, tumorigenesis is associated with an altered expression ratio between the two estrogen receptor (ER) subtypes. In this study, we investigated the effects of ERß ectopic expression on 17ß-estradiol (E2)-induced transactivation and cell proliferation in ERα-positive BG1 ovarian cancer cells. As expected, ERß expression strongly decreased the mitogenic effect of E2, significantly reduced E2-dependent transcriptional responses (both on a stably integrated estrogen response element [ERE] reporter gene and on E2-induced mRNAs), and strongly enhanced the formation of ER heterodimers as evidenced by chromatin immunoprecipitation analysis. Inhibition by the ERα-selective ligand propyl pyrazole triol was less marked than with the pan-agonist (E2) or the ERß-selective (8ß-vinyl-estradiol) ligands, indicating that ERß activation reinforced the inhibitory effects of ERß. Interestingly, in E2-stimulated BG1 cells, ERß was more efficient than ERα to regulate the expression of receptor-interacting protein 140 (RIP140), a major ERα transcriptional corepressor. In addition, we found that the RIP140 protein interacted better with ERß than with ERα (both in vitro and in intact cells by fluorescence cross-correlation spectroscopy). Moreover, RIP140 recruitment on the stably integrated reporter ERE was increased upon ERß overexpression, and ERß activity was more sensitive to repression by RIP140. Finally, small interfering RNA-mediated knockdown of RIP140 expression abolished the repressive effect exerted by activated ERß on the regulation of ERE-controlled transcription by estrogens. Altogether, these data demonstrate the inhibitory effects of ERß on estrogen signaling in ovarian cancer cells and the key role that RIP140 plays in this phenomenon.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Receptor beta de Estrogênio/metabolismo , Estrogênios/metabolismo , Proteínas Nucleares/metabolismo , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Transdução de Sinais , Animais , Células COS , Linhagem Celular Tumoral , Proliferação de Células , Chlorocebus aethiops , DNA de Neoplasias/metabolismo , Receptor alfa de Estrogênio/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Genes Reporter , Humanos , Ligantes , Proteína 1 de Interação com Receptor Nuclear , Neoplasias Ovarianas/genética , Ligação Proteica/genética , Ativação Transcricional/genética
2.
Environ Int ; 34(3): 318-29, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17481732

RESUMO

Fully brominated diphenyl ether, decabromodiphenyl ether (DBDE), is one of the most widely used brominated flame retardants worldwide. Little data is available about the metabolic fate of DBDE in animal models and nothing at all about the extent of foetal exposure. In this work, pregnant Wistar rats were force-fed with 99.8% pure [14C]-DBDE over 96 h at a late stage of gestation (days 16 to 19). More than 19% of the administered dose was recovered in tissues and carcasses, demonstrating efficient absorption of DBDE despite its high molecular weight and low solubility. The highest concentrations of DBDE residues were found in endocrine glands (adrenals, ovaries) and in the liver, with lower values recorded for fat. In all tissue extracts, most of the radioactivity was associated with unchanged DBDE. The use of high-grade purity [14C]-DBDE allowed quantification of several metabolites present both in maternal tissues and in foetuses. These biotransformation products accounted for 9-27% of the extractable radioactivity in tissues and 14% of that in foetuses. Three nona-BDEs and one octa-BDE were identified by LC-APPI/MS. The unequivocal characterisation of a hydroxylated octa-BDE isolated from liver was confirmed by NMR. In rat, the main metabolic pathways of DBDE are debromination and oxidation. DBDE, and very likely most of its metabolites, are able to cross the placental barrier in rat. Metabolic profiles, obtained in vivo for the first time, demonstrated the presence of DBDE and major biotransformation products in endocrine glands as well as in foetuses. The biological activity of these metabolites still needs to be assessed in order to better understand the potential toxicity of DBDE.


Assuntos
Éteres Fenílicos/metabolismo , Bifenil Polibromatos/metabolismo , Tecido Adiposo/química , Animais , Biotransformação , Radioisótopos de Carbono/metabolismo , Cromatografia Líquida , Glândulas Endócrinas/química , Feminino , Feto/química , Retardadores de Chama/metabolismo , Éteres Difenil Halogenados , Fígado/química , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Estrutura Molecular , Oxirredução , Gravidez , Ratos , Ratos Wistar , Coloração e Rotulagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA