Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Cancer Res ; 82(7): 1283-1297, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35131870

RESUMO

Chaperone-mediated autophagy (CMA) is a homeostatic process essential for the lysosomal degradation of a selected subset of the proteome. CMA activity directly depends on the levels of LAMP2A, a critical receptor for CMA substrate proteins at the lysosomal membrane. In glioblastoma (GBM), the most common and aggressive brain cancer in adulthood, high levels of LAMP2A in the tumor and tumor-associated pericytes have been linked to temozolomide resistance and tumor progression. However, the role of LAMP2A, and hence CMA, in any cancer stem cell type or in glioblastoma stem cells (GSC) remains unknown. In this work, we show that LAMP2A expression is enriched in patient-derived GSCs, and its depletion diminishes GSC-mediated tumorigenic activities. Conversely, overexpression of LAMP2A facilitates the acquisition of GSC properties. Proteomic and transcriptomic analysis of LAMP2A-depleted GSCs revealed reduced extracellular matrix interaction effectors in both analyses. Moreover, pathways related to mitochondrial metabolism and the immune system were differentially deregulated at the proteome level. Furthermore, clinical samples of GBM tissue presented overexpression of LAMP2, which correlated with advanced glioma grade and poor overall survival. In conclusion, we identified a novel role of CMA in directly regulating GSCs activity via multiple pathways at the proteome and transcriptome levels. SIGNIFICANCE: A receptor of chaperone-mediated autophagy regulates glioblastoma stem cells and may serve as a potential biomarker for advanced tumor grade and poor survival in this disease.


Assuntos
Autofagia Mediada por Chaperonas , Glioma , Adulto , Autofagia , Autofagia Mediada por Chaperonas/genética , Glioma/genética , Humanos , Proteína 2 de Membrana Associada ao Lisossomo/genética , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo , Células-Tronco Neoplásicas/metabolismo , Proteômica , Transcriptoma
3.
Clin Epigenetics ; 12(1): 170, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-33168052

RESUMO

BACKGROUND: Environmentally induced epigenetic changes can lead to health problems or disease, but the mechanisms involved remain unclear. Morphine can pass through the placental barrier leading to abnormal embryo development. However, the mechanism by which morphine causes these effects and how they sometimes persist into adulthood is not well known. To unravel the morphine-induced chromatin alterations involved in aberrant embryo development, we explored the role of the H3K27me3/PRC2 repressive complex in gene expression and its transmission across cellular generations in response to morphine. RESULTS: Using mouse embryonic stem cells as a model system, we found that chronic morphine treatment induces a global downregulation of the histone modification H3K27me3. Conversely, ChIP-Seq showed a remarkable increase in H3K27me3 levels at specific genomic sites, particularly promoters, disrupting selective target genes related to embryo development, cell cycle and metabolism. Through a self-regulatory mechanism, morphine downregulated the transcription of PRC2 components responsible for H3K27me3 by enriching high H3K27me3 levels at the promoter region. Downregulation of PRC2 components persisted for at least 48 h (4 cell cycles) following morphine removal, though promoter H3K27me3 levels returned to control levels. CONCLUSIONS: Morphine induces targeting of the PRC2 complex to selected promoters, including those of PRC2 components, leading to characteristic changes in gene expression and a global reduction in H3K27me3. Following morphine removal, enhanced promoter H3K27me3 levels revert to normal sooner than global H3K27me3 or PRC2 component transcript levels. We suggest that H3K27me3 is involved in initiating morphine-induced changes in gene expression, but not in their maintenance. Model of Polycomb repressive complex 2 (PRC2) and H3K27me3 alterations induced by chronic morphine exposure. Morphine induces H3K27me3 enrichment at promoters of genes encoding core members of the PRC2 complex and is associated with their transcriptional downregulation.


Assuntos
Histonas/efeitos dos fármacos , Morfina/farmacologia , Células-Tronco Embrionárias Murinas/efeitos dos fármacos , Entorpecentes/farmacologia , Complexo Repressor Polycomb 2/genética , Animais , Ciclo Celular/efeitos dos fármacos , Metilação de DNA , Regulação para Baixo , Desenvolvimento Embrionário/efeitos dos fármacos , Desenvolvimento Embrionário/genética , Epigênese Genética , Feminino , Expressão Gênica , Genoma/genética , Histonas/genética , Camundongos , Morfina/efeitos adversos , Entorpecentes/efeitos adversos , Regiões Promotoras Genéticas/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos
4.
Cancers (Basel) ; 12(4)2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-32316671

RESUMO

Medulloblastoma is the most common and malignant pediatric brain tumor in childhood. It originates from dysregulation of cerebellar development, due to an excessive proliferation of cerebellar granule neuron precursor cells (CGNPs). The underlying molecular mechanisms, except for the role of SHH and WNT pathways, remain largely unknown. ERBB4 is a tyrosine kinase receptor whose activity in cancer is tissue dependent. In this study, we characterized the role of ERBB4 during cerebellum development and medulloblastoma progression paying particular interests to its role in CGNPs and medulloblastoma stem cells (MBSCs). Our results show that ERBB4 is expressed in the CGNPs during cerebellum development where it plays a critical role in migration, apoptosis and differentiation. Similarly, it is enriched in the population of MBSCs, where also controls those critical processes, as well as self-renewal and tumor initiation for medulloblastoma progression. These results are translated to clinical samples where high levels of ERBB4 correlate with poor outcome in Group 4 and all medulloblastomas groups. Transcriptomic analysis identified critical processes and pathways altered in cells with knock-down of ERBB4. These results highlight the impact and underlying mechanisms of ERBB4 in critical processes during cerebellum development and medulloblastoma.

5.
Mech Ageing Dev ; 177: 30-36, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29574045

RESUMO

SOX2 (Sex-determining region Y box 2) is a transcription factor expressed in several foetal and adult tissues and its deregulated activity has been linked to chronic diseases associated with ageing. Nevertheless, the level of SOX2 expression in aged individuals at the tissue level has not previously been examined. In this work, we show that SOX2 expression decreases significantly in the brain with ageing, in both humans and rodents. The administration of resveratrol for 6 months in mice partly attenuated this reduction. We also identified an age-related decline in SOX2 mRNA and protein expression in several other organs, namely, the lung, heart, kidney, spleen and liver. Moreover, peripheral blood mononuclear cells (PBMCs) from elderly expressed lower levels of SOX2 than those from young individuals. Mechanistically, SOX2 expression inversely correlates with p16Ink4a levels. Together, these data show a widespread decrease in SOX2 with age, suggesting that the decline in SOX2 expression might be used as a biomarker of ageing.


Assuntos
Envelhecimento/metabolismo , Regulação Enzimológica da Expressão Gênica , Fatores de Transcrição SOXB1/biossíntese , Adulto , Idoso de 80 Anos ou mais , Animais , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Feminino , Humanos , Leucócitos Mononucleares/enzimologia , Masculino , Camundongos , Pessoa de Meia-Idade , Especificidade de Órgãos
6.
Cell Oncol (Dordr) ; 42(1): 41-54, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30209685

RESUMO

PURPOSE: Glioblastoma is the most common and lethal adult brain tumor. Despite current therapeutic strategies, including surgery, radiation and chemotherapy, the median survival of glioblastoma patients is 15 months. The development of this tumor depends on a sub-population of glioblastoma stem cells governing tumor propagation and therapy resistance. SOX3 plays a role in both normal neural development and carcinogenesis. However, little is known about its role in glioblastoma. Thus, the aim of this work was to elucidate the role of SOX3 in glioblastoma. METHODS: SOX3 expression was assessed using real-time quantitative PCR (RT-qPCR), Western blotting and immunohistochemistry. MTT, immunocytochemistry and Transwell assays were used to evaluate the effects of exogenous SOX3 overexpression on the viability, proliferation, migration and invasion of glioblastoma cells, respectively. The expression of Hedgehog signaling pathway components and autophagy markers was assessed using RT-qPCR and Western blot analyses, respectively. RESULTS: Higher levels of SOX3 expression were detected in a subset of primary glioblastoma samples compared to those in non-tumoral brain tissues. Exogenous overexpression of this gene was found to increase the proliferation, viability, migration and invasion of glioblastoma cells. We also found that SOX3 up-regulation was accompanied by an enhanced activity of the Hedgehog signaling pathway and by suppression of autophagy in glioblastoma cells. Additionally, we found that SOX3 expression was elevated in patient-derived glioblastoma stem cells, as well as in oncospheres derived from glioblastoma cell lines, compared to their differentiated counterparts, implying that SOX3 expression is associated with the undifferentiated state of glioblastoma cells. CONCLUSION: From our data we conclude that SOX3 can promote the malignant behavior of glioblastoma cells.


Assuntos
Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Fatores de Transcrição SOXB1/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Autofagia/efeitos dos fármacos , Autofagia/genética , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/genética , Proteínas Hedgehog/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Fatores de Transcrição SOXB1/genética , Transdução de Sinais/efeitos dos fármacos , Temozolomida/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos , Adulto Jovem
7.
Sci Rep ; 8(1): 12746, 2018 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-30143669

RESUMO

Long non-coding RNAs (LncRNAs) have emerged as a relevant class of genome regulators involved in a broad range of biological processes and with important roles in tumor initiation and malignant progression. We have previously identified a p53-regulated tumor suppressor signature of LncRNAs (PR-LncRNAs) in colorectal cancer. Our aim was to identify the expression and function of this signature in gliomas. We found that the expression of the four PR-LncRNAs tested was high in human low-grade glioma samples and diminished with increasing grade of disease, being the lowest in glioblastoma samples. Functional assays demonstrated that PR-LncRNA silencing increased glioma cell proliferation and oncosphere formation. Mechanistically, we found an inverse correlation between PR-LncRNA expression and SOX1, SOX2 and SOX9 stem cell factors in human glioma biopsies and in glioma cells in vitro. Moreover, knock-down of SOX activity abolished the effect of PR-LncRNA silencing in glioma cell activity. In conclusion, our results demonstrate that the expression and function of PR-LncRNAs are significantly altered in gliomagenesis and that their activity is mediated by SOX factors. These results may provide important insights into the mechanisms responsible for glioblastoma pathogenesis.


Assuntos
Neoplasias Encefálicas/genética , Regulação Neoplásica da Expressão Gênica , Glioma/genética , RNA Longo não Codificante/genética , Fatores de Transcrição SOX/metabolismo , Idoso , Neoplasias Encefálicas/patologia , Proliferação de Células/genética , Feminino , Inativação Gênica , Glioma/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , RNA Longo não Codificante/metabolismo
8.
Int J Mol Sci ; 19(7)2018 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-29932116

RESUMO

Mechanistic target of rapamycin (mTOR) is a master signaling pathway that regulates organismal growth and homeostasis, because of its implication in protein and lipid synthesis, and in the control of the cell cycle and the cellular metabolism. Moreover, it is necessary in cerebellar development and stem cell pluripotency maintenance. Its deregulation has been implicated in the medulloblastoma and in medulloblastoma stem cells (MBSCs). Medulloblastoma is the most common malignant solid tumor in childhood. The current therapies have improved the overall survival but they carry serious side effects, such as permanent neurological sequelae and disability. Recent studies have given rise to a new molecular classification of the subgroups of medulloblastoma, specifying 12 different subtypes containing novel potential therapeutic targets. In this review we propose the targeting of mTOR, in combination with current therapies, as a promising novel therapeutic approach.


Assuntos
Neoplasias Cerebelares/tratamento farmacológico , Meduloblastoma/tratamento farmacológico , Terapia de Alvo Molecular/métodos , Inibidores de Proteínas Quinases/uso terapêutico , Serina-Treonina Quinases TOR/antagonistas & inibidores , Animais , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Neoplasias Cerebelares/metabolismo , Neoplasias Cerebelares/patologia , Humanos , Meduloblastoma/metabolismo , Meduloblastoma/patologia , Morfolinas/uso terapêutico , Pirimidinas/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Triazinas/uso terapêutico
9.
Oncogenesis ; 6(12): 401, 2017 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-29284798

RESUMO

The elucidation of mechanisms involved in resistance to therapies is essential to improve the survival of patients with malignant gliomas. A major feature possessed by glioma cells that may aid their ability to survive therapy and reconstitute tumors is the capacity for self-renewal. We show here that glioma stem cells (GSCs) express low levels of MKP1, a dual-specificity phosphatase, which acts as a negative inhibitor of JNK, ERK1/2, and p38 MAPK, while induction of high levels of MKP1 expression are associated with differentiation of GSC. Notably, we find that high levels of MKP1 correlate with a subset of glioblastoma patients with better prognosis and overall increased survival. Gain of expression studies demonstrated that elevated MKP1 impairs self-renewal and induces differentiation of GSCs while reducing tumorigenesis in vivo. Moreover, we identified that MKP1 is epigenetically regulated and that it mediates the anti-tumor activity of histone deacetylase inhibitors (HDACIs) alone or in combination with temozolomide. In summary, this study identifies MKP1 as a key modulator of the interplay between GSC self-renewal and differentiation and provides evidence that the activation of MKP1, through epigenetic regulation, might be a novel therapeutic strategy to overcome therapy resistance in glioblastoma.

10.
Sci Rep ; 7: 45306, 2017 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-28361984

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by a severe and progressive neuronal loss leading to cognitive dysfunctions. Previous reports, based on the use of chemical inhibitors, have connected the stress kinase p38α to neuroinflammation, neuronal death and synaptic dysfunction. To explore the specific role of neuronal p38α signalling in the appearance of pathological symptoms, we have generated mice that combine expression of the 5XFAD transgenes to induce AD symptoms with the downregulation of p38α only in neurons (5XFAD/p38α∆-N). We found that the neuronal-specific deletion of p38α improves the memory loss and long-term potentiation impairment induced by 5XFAD transgenes. Furthermore, 5XFAD/p38α∆-N mice display reduced amyloid-ß accumulation, improved neurogenesis, and important changes in brain cytokine expression compared with 5XFAD mice. Our results implicate neuronal p38α signalling in the synaptic plasticity dysfunction and memory impairment observed in 5XFAD mice, by regulating both amyloid-ß deposition in the brain and the relay of this accumulation to mount an inflammatory response, which leads to the cognitive deficits.


Assuntos
Doença de Alzheimer/psicologia , Peptídeos beta-Amiloides/metabolismo , Disfunção Cognitiva/metabolismo , Proteína Quinase 14 Ativada por Mitógeno/genética , Neurônios/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Animais , Células Cultivadas , Citocinas/metabolismo , Modelos Animais de Doenças , Regulação para Baixo , Deleção de Genes , Humanos , Camundongos , Camundongos Transgênicos , Proteína Quinase 14 Ativada por Mitógeno/deficiência , Plasticidade Neuronal , Neurônios/citologia , Transdução de Sinais
11.
Sci Rep ; 7: 46575, 2017 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-28425506

RESUMO

Glioblastoma remains the most common and deadliest type of brain tumor and contains a population of self-renewing, highly tumorigenic glioma stem cells (GSCs), which contributes to tumor initiation and treatment resistance. Developmental programs participating in tissue development and homeostasis re-emerge in GSCs, supporting the development and progression of glioblastoma. SOX1 plays an important role in neural development and neural progenitor pool maintenance. Its impact on glioblastoma remains largely unknown. In this study, we have found that high levels of SOX1 observed in a subset of patients correlate with lower overall survival. At the cellular level, SOX1 expression is elevated in patient-derived GSCs and it is also higher in oncosphere culture compared to differentiation conditions in conventional glioblastoma cell lines. Moreover, genetic inhibition of SOX1 in patient-derived GSCs and conventional cell lines decreases self-renewal and proliferative capacity in vitro and tumor initiation and growth in vivo. Contrarily, SOX1 over-expression moderately promotes self-renewal and proliferation in GSCs. These functions seem to be independent of its activity as Wnt/ß-catenin signaling regulator. In summary, these results identify a functional role for SOX1 in regulating glioma cell heterogeneity and plasticity, and suggest SOX1 as a potential target in the GSC population in glioblastoma.


Assuntos
Neoplasias Encefálicas/genética , Glioblastoma/genética , Células-Tronco Neoplásicas/metabolismo , Fatores de Transcrição SOXB1/genética , Animais , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/terapia , Linhagem Celular Tumoral , Glioblastoma/metabolismo , Glioblastoma/terapia , Humanos , Estimativa de Kaplan-Meier , Camundongos Endogâmicos NOD , Camundongos Nus , Camundongos SCID , Interferência de RNA , Terapêutica com RNAi/métodos , Fatores de Transcrição SOXB1/metabolismo , Carga Tumoral/genética , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
12.
Front Oncol ; 6: 222, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27822457

RESUMO

Glioblastoma is the most common and malignant brain cancer in adults. Current therapy consisting of surgery followed by radiation and temozolomide has a moderate success rate and the tumor reappears. Among the features that a cancer cell must have to survive the therapeutic treatment and reconstitute the tumor is the ability of self-renewal. Therefore, it is vital to identify the molecular mechanisms that regulate this activity. Sex-determining region Y (SRY)-box 2 (SOX2) is a transcription factor whose activity has been associated with the maintenance of the undifferentiated state of cancer stem cells in several tissues, including the brain. Several groups have detected increased SOX2 levels in biopsies of glioblastoma patients, with the highest levels associated with poor outcome. Therefore, SOX2 silencing might be a novel therapeutic approach to combat cancer and particularly brain tumors. In this review, we will summarize the current knowledge about SOX2 in glioblastoma and recapitulate several strategies that have recently been described targeting SOX2 in this malignancy.

13.
Aging (Albany NY) ; 8(12): 3185-3208, 2016 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-27794564

RESUMO

Centenarians not only enjoy an extraordinary aging, but also show a compression of morbidity. Using functional transcriptomic analysis of peripheral blood mononuclear cells (PMBC) we identified 1721 mRNAs differentially expressed by centenarians when compared with septuagenarians and young people. Sub-network analysis led us to identify Bcl-xL as an important gene up-regulated in centenarians. It is involved in the control of apoptosis, cellular damage protection and also in modulation of immune response, all associated to healthy aging. Indeed, centenarians display lower plasma cytochrome C levels, higher mitochondrial membrane potential and also less cellular damage accumulation than septuagenarians. Leukocyte chemotaxis and NK cell activity are significantly impaired in septuagenarians compared with young people whereas centenarians maintain them. To further ascertain the functional role of Bcl-xL in cellular aging, we found that lymphocytes from septuagenarians transduced with Bcl-xL display a reduction in senescent-related markers. Finally, to demonstrate the role of Bcl-xL in longevity at the organism level, C. elegans bearing a gain of function mutation in the Bcl-xL ortholog ced-9, showed a significant increase in mean and maximal life span. These results show that mRNA expression in centenarians is unique and reveals that Bcl-xL plays an important role in exceptional aging.


Assuntos
Regulação da Expressão Gênica/fisiologia , Longevidade/fisiologia , Proteína bcl-X/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcriptoma , Regulação para Cima , Proteína bcl-X/genética
14.
Sci Rep ; 6: 32350, 2016 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-27571710

RESUMO

The cancer stem cell (CSC) hypothesis proposes a hierarchical organization of tumors, in which stem-like cells sustain tumors and drive metastasis. The molecular mechanisms underlying the acquisition of CSCs and metastatic traits are not well understood. SOX9 is a transcription factor linked to stem cell maintenance and commonly overexpressed in solid cancers including colorectal cancer. In this study, we show that SOX9 levels are higher in metastatic (SW620) than in primary colorectal cancer cells (SW480) derived from the same patient. This elevated expression correlated with enhanced self-renewal activity. By gain and loss-of-function studies in SW480 and SW620 cells respectively, we reveal that SOX9 levels modulate tumorsphere formation and self-renewal ability in vitro and tumor initiation in vivo. Moreover, SOX9 regulates migration and invasion and triggers the transition between epithelial and mesenchymal states. These activities are partially dependent on SOX9 post-transcriptional modifications. Importantly, treatment with rapamycin inhibits self-renewal and tumor growth in a SOX9-dependent manner. These results identify a functional role for SOX9 in regulating colorectal cancer cell plasticity and metastasis, and provide a strong rationale for a rapamycin-based therapeutic strategy.


Assuntos
Plasticidade Celular/genética , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Fatores de Transcrição SOX9/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Neoplasias Colorretais/patologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Invasividade Neoplásica/genética , Metástase Neoplásica , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Transdução de Sinais/efeitos dos fármacos , Sirolimo/administração & dosagem
15.
Am J Cancer Res ; 6(4): 701-13, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27186426

RESUMO

Sox2 is a critical regulator of embryogenesis and necessary for cellular reprogramming. It also plays an important role in tissue homeostasis and regeneration, maintaining the population of undifferentiated adult stem cells. Like various developmental and stem cell genes, SOX2 is aberrantly expressed and amplified in several human cancers. Moreover, functional studies have shown that it regulates many biological processes including cell proliferation, apoptosis, self-renewal and invasion. While it is oncogenic in most cancers, SOX2 activity is controversial in gastric cancer, where it might behave as a tumor suppressor in some situations. In this review, we discuss its role in cancer biology, with particular attention to what is known about the involvement of SOX2 in gastric cancer biology.

16.
Expert Opin Ther Targets ; 20(4): 393-405, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26878385

RESUMO

BACKGROUND: SOX2 and SOX9 are commonly overexpressed in glioblastoma, and regulate the activity of glioma stem cells (GSCs). Their specific and overlapping roles in GSCs and glioma treatment remain unclear. METHODS: SOX2 and SOX9 levels were examined in human biopsies. Gain and loss of function determined the impact of altering SOX2 and SOX9 on cell proliferation, senescence, stem cell activity, tumorigenesis and chemoresistance. RESULTS: SOX2 and SOX9 expression correlates positively in glioma cells and glioblastoma biopsies. High levels of SOX2 bypass cellular senescence and promote resistance to temozolomide. Mechanistic investigations revealed that SOX2 acts upstream of SOX9. mTOR genetic and pharmacologic (rapamycin) inhibition decreased SOX2 and SOX9 expression, and reversed chemoresistance. CONCLUSIONS: Our findings reveal SOX2-SOX9 as an oncogenic axis that regulates stem cell properties and chemoresistance. We identify that rapamycin abrogate SOX protein expression and provide evidence that a combination of rapamycin and temozolomide inhibits tumor growth in cells with high SOX2/SOX9.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Glioma/tratamento farmacológico , Adulto , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Dacarbazina/administração & dosagem , Dacarbazina/análogos & derivados , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Glioblastoma/patologia , Glioma/genética , Glioma/patologia , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos Nus , Camundongos SCID , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Sirolimo/administração & dosagem , Serina-Treonina Quinases TOR/antagonistas & inibidores , Temozolomida , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Cell Rep ; 14(2): 216-24, 2016 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-26748703

RESUMO

Maintenance of genomic integrity is critical during neurodevelopment, particularly in rapidly dividing cerebellar granule neuronal precursors that experience constitutive replication-associated DNA damage. As Dicer was recently recognized to have an unexpected function in the DNA damage response, we examined whether Dicer was important for preserving genomic integrity in the developing brain. We report that deletion of Dicer in the developing mouse cerebellum resulted in the accumulation of DNA damage leading to cerebellar progenitor degeneration, which was rescued with p53 deficiency; deletion of DGCR8 also resulted in similar DNA damage and cerebellar degeneration. Dicer deficiency also resulted in DNA damage and death in other rapidly dividing cells including embryonic stem cells and the malignant cerebellar progenitors in a mouse model of medulloblastoma. Together, these results identify an essential function of Dicer in resolving the spontaneous DNA damage that occurs during the rapid proliferation of developmental progenitors and malignant cells.


Assuntos
Cerebelo/metabolismo , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Células-Tronco Neurais/fisiologia , Ribonuclease III/genética , Ribonuclease III/metabolismo , Animais , Proliferação de Células , Cerebelo/citologia , Dano ao DNA , Camundongos
18.
Development ; 142(22): 3921-32, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26450969

RESUMO

Alterations in genes that regulate brain size may contribute to both microcephaly and brain tumor formation. Here, we report that Aspm, a gene that is mutated in familial microcephaly, regulates postnatal neurogenesis in the cerebellum and supports the growth of medulloblastoma, the most common malignant pediatric brain tumor. Cerebellar granule neuron progenitors (CGNPs) express Aspm when maintained in a proliferative state by sonic hedgehog (Shh) signaling, and Aspm is expressed in Shh-driven medulloblastoma in mice. Genetic deletion of Aspm reduces cerebellar growth, while paradoxically increasing the mitotic rate of CGNPs. Aspm-deficient CGNPs show impaired mitotic progression, altered patterns of division orientation and differentiation, and increased DNA damage, which causes progenitor attrition through apoptosis. Deletion of Aspm in mice with Smo-induced medulloblastoma reduces tumor growth and increases DNA damage. Co-deletion of Aspm and either of the apoptosis regulators Bax or Trp53 (also known as p53) rescues the survival of neural progenitors and reduces the growth restriction imposed by Aspm deletion. Our data show that Aspm functions to regulate mitosis and to mitigate DNA damage during CGNP cell division, causes microcephaly through progenitor apoptosis when mutated, and sustains tumor growth in medulloblastoma.


Assuntos
Proteínas de Ligação a Calmodulina/metabolismo , Neoplasias Cerebelares/fisiopatologia , Cerebelo/crescimento & desenvolvimento , Meduloblastoma/fisiopatologia , Proteínas do Tecido Nervoso/metabolismo , Neurogênese/fisiologia , Animais , Western Blotting , Proteínas de Ligação a Calmodulina/genética , Dano ao DNA/genética , Deleção de Genes , Imuno-Histoquímica , Imageamento por Ressonância Magnética , Camundongos , Camundongos Knockout , Mitose/genética , Proteínas do Tecido Nervoso/genética , Células-Tronco Neurais/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/fisiologia
19.
Cancer Metab ; 1(1): 2, 2013 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-24280485

RESUMO

BACKGROUND: While aerobic glycolysis is linked to unconstrained proliferation in cancer, less is known about its physiological role. Why this metabolic program that promotes tumor growth is preserved in the genome has thus been unresolved. We tested the hypothesis that aerobic glycolysis derives from developmental processes that regulate rapid proliferation. METHODS: We performed an integrated analysis of metabolism and gene expression in cerebellar granule neuron progenitors (CGNPs) with and without Sonic Hedgehog (Shh), their endogenous mitogen. Because our analysis highlighted Hexokinase-2 (Hk2) as a key metabolic regulator induced by Shh, we studied the effect of conditional genetic Hk2 deletion in CGNP development. We then crossed Hk2 conditional knockout mice with transgenic SmoM2 mice that develop spontaneous medulloblastoma and determined changes in SmoM2-driven tumorigenesis. RESULTS: We show that Shh and phosphoinositide 3-kinase (PI3K) signaling combine to induce an Hk2-dependent glycolytic phenotype in CGNPs. This phenotype is recapitulated in medulloblastoma, a malignant tumor of CGNP origin. Importantly, cre-mediated ablation of Hk2 abrogated aerobic glycolysis, disrupting CGNP development and Smoothened-induced tumorigenesis. Comparing tumorigenesis in medulloblastoma-prone SmoM2 mice with and without functional Hk2, we demonstrate that loss of aerobic glycolysis reduces the aggressiveness of medulloblastoma, causing tumors to grow as indolent lesions and allowing long-term survival of tumor bearing mice. CONCLUSIONS: Our investigations demonstrate that aerobic glycolysis in cancer derives from developmental mechanisms that persist in tumorigenesis. Moreover, we demonstrate in a primary tumor model the anti-cancer potential of blocking aerobic glycolysis by targeting Hk2.See commentary article:http://www.biomedcentral.com/1741-7007/11/3.

20.
PLoS One ; 7(11): e48401, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23144874

RESUMO

Neuroblastoma (NB) pathogenesis has been reported to be closely associated with numerous genetic alterations. However, underlying DNA methylation patterns have not been extensively studied in this developmental malignancy. Here, we generated microarray-based DNA methylation profiles of primary neuroblastic tumors. Stringent supervised differential methylation analyses allowed us to identify epigenetic changes characteristic for NB tumors as well as for clinical and biological subtypes of NB. We observed that gene-specific loss of DNA methylation is more prevalent than promoter hypermethylation. Remarkably, such hypomethylation affected cancer-related biological functions and genes relevant to NB pathogenesis such as CCND1, SPRR3, BTC, EGF and FGF6. In particular, differential methylation in CCND1 affected mostly an evolutionary conserved functionally relevant 3' untranslated region, suggesting that hypomethylation outside promoter regions may play a role in NB pathogenesis. Hypermethylation targeted genes involved in cell development and proliferation such as RASSF1A, POU2F2 or HOXD3, among others. The results derived from this study provide new candidate epigenetic biomarkers associated with NB as well as insights into the molecular pathogenesis of this tumor, which involves a marked gene-specific hypomethylation.


Assuntos
Metilação de DNA/genética , Genes Neoplásicos/genética , Neuroblastoma/genética , Criança , Pré-Escolar , Ciclina D1/genética , Ciclina D1/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Lactente , Recém-Nascido , Reprodutibilidade dos Testes , Análise de Sequência de DNA , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...