Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEMS Microbiol Ecol ; 99(6)2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37226596

RESUMO

Bacterial endosymbionts can provide benefits for their eukaryotic hosts, but it is often unclear if endosymbionts benefit from these relationships. The social amoeba Dictyostelium discoideum associates with three species of Paraburkholderia endosymbionts, including P. agricolaris and P. hayleyella. These endosymbionts can be costly to the host but are beneficial in certain contexts because they allow D. discoideum to carry prey bacteria through the dispersal stage. In experiments where no other species are present, P. hayleyella benefits from D. discoideum while P. agricolaris does not. However, the presence of other species may influence this symbiosis. We tested if P. agricolaris and P. hayleyella benefit from D. discoideum in the context of resource competition with Klebsiella pneumoniae, the typical laboratory prey of D. discoideum. Without D. discoideum, K. pneumoniae depressed the growth of both Paraburkholderia symbionts, consistent with competition. P. hayleyella was more harmed by interspecific competition than P. agricolaris. We found that P. hayleyella was rescued from competition by D. discoideum, while P. agricolaris was not. This may be because P. hayleyella is more specialized as an endosymbiont; it has a highly reduced genome compared to P. agricolaris and may have lost genes relevant for resource competition outside of its host.


Assuntos
Amoeba , Burkholderiaceae , Dictyostelium , Dictyostelium/genética , Dictyostelium/microbiologia , Amoeba/microbiologia , Burkholderiaceae/genética , Bactérias , Ecologia
2.
Front Microbiol ; 12: 719112, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34671328

RESUMO

Most insects maintain associations with microbes that shape their ecology and evolution. Such symbioses have important applied implications when the associated insects are pests or vectors of disease. The squash bug, Anasa tristis (Coreoidea: Coreidae), is a significant pest of human agriculture in its own right and also causes damage to crops due to its capacity to transmit a bacterial plant pathogen. Here, we demonstrate that complete understanding of these insects requires consideration of their association with bacterial symbionts in the family Burkholderiaceae. Isolation and sequencing of bacteria housed in the insects' midgut crypts indicates that these bacteria are consistent and dominant members of the crypt-associated bacterial communities. These symbionts are closely related to Caballeronia spp. associated with other true bugs in the superfamilies Lygaeoidea and Coreoidea. Fitness assays with representative Burkholderiaceae strains indicate that the association can significantly increase survival and decrease development time, though strains do vary in the benefits that they confer to their hosts, with Caballeronia spp. providing the greatest benefit. Experiments designed to assess transmission mode indicate that, unlike many other beneficial insect symbionts, the bacteria are not acquired from parents before or after hatching but are instead acquired from the environment after molting to a later developmental stage. The bacteria do, however, have the capacity to escape adults to be transmitted to later generations, leaving the possibility for a combination of indirect vertical and horizontal transmission.

3.
Ecol Evol ; 9(17): 9878-9890, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31534701

RESUMO

Hosts and their associated microbes can enter into different relationships, which can range from mutualism, where both partners benefit, to exploitation, where one partner benefits at the expense of the other. Many host-microbe relationships have been presumed to be mutualistic, but frequently only benefits to the host, and not the microbial symbiont, have been considered. Here, we address this issue by looking at the effect of host association on the fitness of two facultative members of the Dictyostelium discoideum microbiome (Burkholderia agricolaris and Burkholderia hayleyella). Using two indicators of bacterial fitness, growth rate and abundance, we determined the effect of D. discoideum on Burkholderia fitness. In liquid culture, we found that D. discoideum amoebas lowered the growth rate of both Burkholderia species. In soil microcosms, we tracked the abundance of Burkholderia grown with and without D. discoideum over a month and found that B. hayleyella had larger populations when associating with D. discoideum while B. agricolaris was not significantly affected. Overall, we find that both B. agricolaris and B. hayleyella pay a cost to associate with D. discoideum, but B. hayleyella can also benefit under some conditions. Understanding how fitness varies in facultative symbionts will help us understand the persistence of host-symbiont relationships. OPEN RESEARCH BADGES: This article has earned an Open Data Badge for making publicly available the digitally-shareable data necessary to reproduce the reported results. The data is available at https://openscholarship.wustl.edu/data/15/.

4.
Artigo em Inglês | MEDLINE | ID: mdl-30533398

RESUMO

A small subset of bacteria in soil interact directly with eukaryotes. Which ones do so can reveal what is important to a eukaryote and how eukaryote defenses might be breached. Soil amoebae are simple eukaryotic organisms and as such could be particularly good for understanding how eukaryote microbiomes originate and are maintained. One such amoeba, Dictyostelium discoideum, has both permanent and temporary associations with bacteria. Here we focus on culturable bacterial associates in order to interrogate their relationship with D. discoideum. To do this, we isolated over 250 D. discoideum fruiting body samples from soil and deer feces at Mountain Lake Biological Station. In one-third of the wild D. discoideum we tested, one to six bacterial species were found per fruiting body sorus (spore mass) for a total of 174 bacterial isolates. The remaining two-thirds of D. discoideum fruiting body samples did not contain culturable bacteria, as is thought to be the norm. A majority (71.4%) of the unique bacterial haplotypes are in Proteobacteria. The rest are in either Actinobacteria, Bacteriodetes, or Firmicutes. The highest bacterial diversity was found in D. discoideum fruiting bodies originating from deer feces (27 OTUs), greater than either of those originating in shallow (11 OTUs) or in deep soil (4 OTUs). Rarefaction curves and the Chao1 estimator for species richness indicated the diversity in any substrate was not fully sampled, but for soil it came close. A majority of the D. discoideum-associated bacteria were edible by D. discoideum and supported its growth (75.2% for feces and 81.8% for soil habitats). However, we found several bacteria genera were able to evade phagocytosis and persist in D. discoideum cells through one or more social cycles. This study focuses not on the entire D. discoideum microbiome, but on the culturable subset of bacteria that have important eukaryote interactions as prey, symbionts, or pathogens. These eukaryote and bacteria interactions may provide fertile ground for investigations of bacteria using amoebas to gain an initial foothold in eukaryotes and of the origins of symbiosis and simple microbiomes.


Assuntos
Amoeba/microbiologia , Bactérias/classificação , Biodiversidade , Fezes/microbiologia , Microbiota , Microbiologia do Solo , Animais , Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Cervos , Dictyostelium/microbiologia , Fagocitose , Filogenia , Solo , Simbiose , Virginia
5.
J Insect Physiol ; 86: 17-24, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26699661

RESUMO

Endosymbionts can fundamentally alter host physiology. Whether such changes are beneficial or detrimental to one or both partners may depend on the dynamics of the symbiotic relationship. Here we investigate the relationship between facultative symbionts and host immune responses. The pea aphid, Acyrthosiphon pisum, maintains an obligate primary symbiont, but may also harbour one or more facultative, secondary symbionts. Given their more transient nature and relatively recent adoption of a symbiotic lifestyle compared to primary symbionts, secondary symbionts may present a challenge for the host immune system. We assessed the response of several key components of the cellular immune system (phenoloxidase activity, encapsulation, immune cell counts) in the presence of alternative secondary symbionts, investigating the role of host and secondary symbiont genotype in specific responses. There was no effect of secondary symbiont presence on the phenoloxidase response, but we found variation in the encapsulation response and in immune cell counts based largely on the secondary symbiont. Host genotype was less influential in determining immunity outcomes. Our results highlight the importance of secondary symbionts in shaping host immunity. Understanding the complex physiological responses that can be propagated by host-symbiont associations has important consequences for host ecology, including symbiont and pathogen transmission dynamics.


Assuntos
Afídeos/imunologia , Afídeos/microbiologia , Imunidade Celular , Serratia/fisiologia , Animais , Afídeos/enzimologia , Feminino , Monofenol Mono-Oxigenase/metabolismo , Simbiose
6.
Front Microbiol ; 5: 510, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25309530

RESUMO

Microbial associations are integral to all eukaryotes. Mutualism, the interaction of two species for the benefit of both, is an important aspect of microbial associations, with evidence that multicellular organisms in particular benefit from microbes. However, the microbe's perspective has largely been ignored, and it is unknown whether most microbial symbionts benefit from their associations with hosts. It has been presumed that microbial symbionts receive host-derived nutrients or a competition-free environment with reduced predation, but there have been few empirical tests, or even critical assessments, of these assumptions. We evaluate these hypotheses based on available evidence, which indicate reduced competition and predation are not universal benefits for symbionts. Some symbionts do receive nutrients from their host, but this has not always been linked to a corresponding increase in symbiont fitness. We recommend experiments to test symbiont fitness using current experimental systems of symbiosis and detail considerations for other systems. Incorporating symbiont fitness into symbiosis research will provide insight into the evolution of mutualistic interactions and cooperation in general.

7.
Evolution ; 68(8): 2421-9, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24689981

RESUMO

Individuals vary in their ability to defend against pathogens. Determining how natural selection maintains this variation is often difficult, in part because there are multiple ways that organisms defend themselves against pathogens. One important distinction is between mechanisms of resistance that fight off infection, and mechanisms of tolerance that limit the impact of infection on host fitness without influencing pathogen growth. Theory predicts variation among genotypes in resistance, but not necessarily in tolerance. Here, we study variation among pea aphid (Acyrthosiphon pisum) genotypes in defense against the fungal pathogen Pandora neoaphidis. It has been well established that pea aphids can harbor symbiotic bacteria that protect them from fungal pathogens. However, it is unclear whether aphid genotypes vary in defense against Pandora in the absence of protective symbionts. We therefore measured resistance and tolerance to fungal infection in aphid lines collected without symbionts, and found variation among lines in survival and in the percent of individuals that formed a sporulating cadaver. We also found evidence of variation in tolerance to the effects of pathogen infection on host fecundity, but no variation in tolerance of pathogen-induced mortality. We discuss these findings in light of theoretical predictions about host-pathogen coevolution.


Assuntos
Afídeos/genética , Fertilidade/genética , Fungos/patogenicidade , Variação Genética , Interações Hospedeiro-Patógeno , Animais , Afídeos/microbiologia , Resistência à Doença/genética , Aptidão Genética , Repetições de Microssatélites , Simbiose
8.
J Insect Physiol ; 57(6): 830-9, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21439291

RESUMO

The innate immune system of insects provides effective defence against a range of parasites and pathogens. The pea aphid, Acyrthosiphon pisum, is a novel study system for investigating host-parasite interactions due to its complex associations with both well-characterised bacterial symbionts and a diversity of pathogens and parasites, including several important biological control agents. However, little is known about the cellular and humoral immune responses of aphids. Here we identify three morphologically distinct types of haemocytes in circulation that we name prohemocytes, granulocytes and oenocytoids. Granulocytes avidly phagocytose Gram negative Escherechia coli and Gram positive Micrococcus luteus while oenocytoids exhibit melanotic activity. Prohaemocytes increase in abundance immediately following an immune challenge, irrespective of the source of stimulus. Pea aphids form melanotic capsules around Sephadex beads but do not form cellular capsules. We also did not detect any antimicrobial peptide activity in the haemolymph using zone of inhibition assays. We discuss these results in relation to recent findings from the pea aphid genome annotation project that suggest that aphids have a reduced immune gene repertoire compared to other insects.


Assuntos
Afídeos/imunologia , Interações Hospedeiro-Patógeno , Animais , Afídeos/genética , Afídeos/microbiologia , Escherichia coli/fisiologia , Granulócitos/imunologia , Hemócitos/imunologia , Imunidade , Micrococcus luteus/fisiologia , Fagocitose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...