Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Opt ; 50(28): 5357-60, 2011 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-22016201

RESUMO

The concept of the vector flux field was first introduced as a photometrical theory and later developed in the field of nonimaging optics; it has provided new perspectives in the design of concentrators, overcoming standard ray tracing techniques. The flux field method has shown that reflective concentrators with the geometry of the field lines achieve the theoretical limit of concentration. In this paper we study the role of surfaces orthogonal to the field vector J. For rotationally symmetric systems J is orthogonal to its curl, and then a family of surfaces orthogonal to the lines of J exists, which can be called the family of surfaces of constant pseudopotential. Using the concept of the flux tube, it is possible to demonstrate that refractive concentrators with the shape of these pseudopotential surfaces achieve the theoretical limit of concentration.

2.
Appl Opt ; 48(4): 712-5, 2009 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-19183598

RESUMO

We present a family of three-dimensional concentrators constructed from the photic field generated by a Lambertian emitter. The profile of these concentrators is obtained from the field lines for a two-dimensional truncated wedge and is based on the union between a hyperbola and a tilted parabola. By revolution of this profile, we obtain hyperparabolic concentrators (HPCs). In the limiting case when the focal length of the hyperbola becomes the radius of the exit aperture, the HPC becomes the well-known compound parabolic concentrator. On the other hand, when the focal length of the hyperbola becomes infinite, the HPC achieves the thermodynamic limit of concentration.

3.
Appl Opt ; 45(29): 7622-7, 2006 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-17068595

RESUMO

Nonimaging optics is a field devoted to the design of optical components for applications such as solar concentration or illumination. In this field, many different techniques have been used to produce optical devices, including the use of reflective and refractive components or inverse engineering techniques. However, many of these optical components are based on translational symmetries, rotational symmetries, or free-form surfaces. We study a new family of nonimaging concentrators called elliptical concentrators. This new family of concentrators provides new capabilities and can have different configurations, either homofocal or nonhomofocal. Translational and rotational concentrators can be considered as particular cases of elliptical concentrators.

4.
Appl Opt ; 41(17): 3461-8, 2002 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-12074518

RESUMO

The red-blue-green (RGB) calibration technique consists in constructing an a priori calibration table of the isochromatic retardation versus the triplet of RGB values obtained with a RGB CCD camera. In this way a lookup table (LUT) is built in which the entry is the corresponding RGB triplet and the output is the given retardation. This calibration (a radiometric quantity) depends on the geometric and chromatic parameters of the setup. Once the calibration is performed, the isochromatic retardation at a given point of the sample is computed as the one that minimizes the Euclidean distance between the measured RGB triplet and the triplets stored in the LUT. We present an enhanced RGB calibration algorithm for isochromatic fringe pattern demodulation. We have improved the standard demodulation algorithm used in RGB calibration by changing the Euclidean cost function to a regularized one in which the fidelity term corresponds to the Euclidean distance between RGB triplets; the regularizing term forces piecewise continuity for the isochromatic retardation. Additionally we have implemented a selective search in the RGB calibration LUT. We have tested the algorithm with simulated as well as real photoelastic data with good results.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA