Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Virus Res ; 341: 199322, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38228190

RESUMO

The emergence of highly infectious pathogens with their potential for triggering global pandemics necessitate the development of effective treatment strategies, including broad-spectrum antiviral therapies to safeguard human health. This study investigates the antiviral activity of emetine, dehydroemetine (DHE), and congeneric compounds against SARS-CoV-2 and HCoV-OC43, and evaluates their impact on the host cell. Concurrently, we assess the potential cardiotoxicity of these ipecac alkaloids. Significantly, our data reveal that emetine and the (-)-R,S isomer of 2,3-dehydroemetine (designated in this paper as DHE4) reduce viral growth at nanomolar concentrations (i.e., IC50 ∼ 50-100 nM), paralleling those required for inhibition of protein synthesis, while calcium channel blocking activity occurs at elevated concentrations (i.e., IC50 ∼ 40-60 µM). Our findings suggest that the antiviral mechanisms primarily involve disruption of host cell protein synthesis and is demonstrably stereoisomer specific. The prospect of a therapeutic window in which emetine or DHE4 inhibit viral propagation without cardiotoxicity renders these alkaloids viable candidates in strategies worthy of clinical investigation.


Assuntos
Alcaloides , Emetina , Emetina/análogos & derivados , Humanos , Emetina/farmacologia , Ipeca/farmacologia , Cardiotoxicidade , Antivirais/toxicidade
2.
Int J Mol Sci ; 24(4)2023 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-36835561

RESUMO

The cpdB gene is pro-virulent in avian pathogenic Escherichia coli and in Salmonella enterica, where it encodes a periplasmic protein named CpdB. It is structurally related to cell wall-anchored proteins, CdnP and SntA, encoded by the also pro-virulent cdnP and sntA genes of Streptococcus agalactiae and Streptococcus suis, respectively. CdnP and SntA effects are due to extrabacterial hydrolysis of cyclic-di-AMP, and to complement action interference. The mechanism of CpdB pro-virulence is unknown, although the protein from non-pathogenic E. coli hydrolyzes cyclic dinucleotides. Considering that the pro-virulence of streptococcal CpdB-like proteins is mediated by c-di-AMP hydrolysis, S. enterica CpdB activity was tested as a phosphohydrolase of 3'-nucleotides, 2',3'-cyclic mononucleotides, linear and cyclic dinucleotides, and cyclic tetra- and hexanucleotides. The results help to understand cpdB pro-virulence in S. enterica and are compared with E. coli CpdB and S. suis SntA, including the activity of the latter on cyclic-tetra- and hexanucleotides reported here for the first time. On the other hand, since CpdB-like proteins are relevant to host-pathogen interactions, the presence of cpdB-like genes was probed in eubacterial taxa by TblastN analysis. The non-homogeneous genomic distribution revealed taxa with cpdB-like genes present or absent, identifying eubacteria and plasmids where they can be relevant.


Assuntos
Proteínas de Escherichia coli , Salmonella enterica , Streptococcus suis , Escherichia coli/metabolismo , Salmonella enterica/metabolismo , Streptococcus suis/metabolismo , Virulência , AMP Cíclico , Genômica , Proteínas de Escherichia coli/metabolismo , 2',3'-Nucleotídeo Cíclico Fosfodiesterases/genética
3.
J Mol Biol ; 435(5): 167973, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36690070

RESUMO

The SARS-CoV-2 coronavirus has caused a global pandemic. Despite the initial success of vaccines at preventing infection, genomic variation has led to the proliferation of variants capable of higher infectivity. Mutations in the SARS-CoV-2 genome are the consequence of replication errors, highlighting the importance of understanding the determinants of SARS-CoV-2 replication fidelity. The RNA-dependent RNA polymerase (RdRp) is the central catalytic subunit for SARS-CoV-2 RNA replication and genome transcription. Here, we report the fidelity of ribonucleotide incorporation by SARS-CoV-2 RdRp (nsp12), along with its co-factors nsp7/nsp8, using steady-state kinetic analysis. Our analysis suggests that in the absence of the proofreading subunit (nsp14), the nsp12/7/8 complex has a surprisingly low base substitution fidelity (10-1-10-3). This is orders of magnitude lower than the fidelity reported for other coronaviruses (10-6-10-7), highlighting the importance of proofreading for faithful SARS-CoV-2 replication. We performed a mutational analysis of all reported SARS-CoV-2 genomes and identified mutations in both nsp12 and nsp14 that appear likely to lower viral replication fidelity through mechanisms that include impairing the nsp14 exonuclease activity or its association with the RdRp. Our observations provide novel insight into the mechanistic basis of replication fidelity in SARS-CoV-2 and the potential effect of nsp12 and nsp14 mutations on replication fidelity, informing the development of future antiviral agents and SARS-CoV-2 vaccines.


Assuntos
RNA Polimerase Dependente de RNA , Ribonucleotídeos , SARS-CoV-2 , Replicação Viral , Humanos , Cinética , Ribonucleotídeos/metabolismo , RNA Viral/genética , RNA Polimerase Dependente de RNA/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/genética
4.
Life (Basel) ; 12(6)2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35743905

RESUMO

In an effort to identify functional-energetic correlations leading to the development of efficient anti-SARS-CoV-2 therapeutic agents, we have designed synthetic analogs of aurintricarboxylic acid (ATA), a heterogeneous polymeric mixture of structurally related linear homologs known to exhibit a host of biological properties, including antiviral activity. These derivatives are evaluated for their ability to interact with a plasma transporter protein (human serum albumin), eukaryotic (yeast) ribosomes, and a SARS-CoV-2 target, the RNA-dependent RNA polymerase (RdRp). The resultant data are critical for characterizing drug distribution, bioavailability, and effective inhibition of host and viral targets. Promising lead compounds are selected on the basis of their binding energetics which have been characterized and correlated with functional activities as assessed by inhibition of RNA replication and protein synthesis. Our results reveal that the activity of heterogeneous ATA is mimicked by linear compounds of defined molecular weight, with a dichlorohexamer salicylic-acid derivative exhibiting the highest potency. These findings are instrumental for optimizing the design of structurally defined ATA analogs that fulfill the requirements of an antiviral drug with respect to bioavailability, homogeneity, and potency, thereby expanding the arsenal of therapeutic regimens that are currently available to address the urgent need for effective SARS-CoV-2 treatment strategies.

5.
Nucleic Acids Res ; 50(1): 322-332, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34928349

RESUMO

Mitochondrial transcription factor A (TFAM) plays a critical role in mitochondrial transcription initiation and mitochondrial DNA (mtDNA) packaging. Both functions require DNA binding, but in one case TFAM must recognize a specific promoter sequence, while packaging requires coating of mtDNA by association with non sequence-specific regions. The mechanisms by which TFAM achieves both sequence-specific and non sequence-specific recognition have not yet been determined. Existing crystal structures of TFAM bound to DNA allowed us to identify two guanine-specific interactions that are established between TFAM and the bound DNA. These interactions are observed when TFAM is bound to both specific promoter sequences and non-sequence specific DNA. These interactions are established with two guanine bases separated by 10 random nucleotides (GN10G). Our biochemical results demonstrate that the GN10G consensus is essential for transcriptional initiation and contributes to facilitating TFAM binding to DNA substrates. Furthermore, we report a crystal structure of TFAM in complex with a non sequence-specific sequence containing a GN10G consensus. The structure reveals a unique arrangement in which TFAM bridges two DNA substrates while maintaining the GN10G interactions. We propose that the GN10G consensus is key to facilitate the interaction of TFAM with DNA.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas Mitocondriais/química , Fatores de Transcrição/química , Sítios de Ligação , DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Humanos , Proteínas Mitocondriais/metabolismo , Simulação de Dinâmica Molecular , Ligação Proteica , Fatores de Transcrição/metabolismo
6.
Mol Cell ; 81(13): 2778-2792.e4, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33932350

RESUMO

DNA polymerase ε (Polε) carries out high-fidelity leading strand synthesis owing to its exonuclease activity. Polε polymerase and exonuclease activities are balanced, because of partitioning of nascent DNA strands between catalytic sites, so that net resection occurs when synthesis is impaired. In vivo, DNA synthesis stalling activates replication checkpoint kinases, which act to preserve the functional integrity of replication forks. We show that stalled Polε drives nascent strand resection causing fork functional collapse, averted via checkpoint-dependent phosphorylation. Polε catalytic subunit Pol2 is phosphorylated on serine 430, influencing partitioning between polymerase and exonuclease active sites. A phosphormimetic S430D change reduces exonucleolysis in vitro and counteracts fork collapse. Conversely, non-phosphorylatable pol2-S430A expression causes resection-driven stressed fork defects. Our findings reveal that checkpoint kinases switch Polε to an exonuclease-safe mode preventing nascent strand resection and stabilizing stalled replication forks. Elective partitioning suppression has implications for the diverse Polε roles in genome integrity maintenance.


Assuntos
DNA Polimerase II/química , Exonucleases/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Substituição de Aminoácidos , Domínio Catalítico , DNA Polimerase II/genética , DNA Polimerase II/metabolismo , DNA Fúngico/biossíntese , DNA Fúngico/química , DNA Fúngico/genética , Exonucleases/genética , Exonucleases/metabolismo , Mutação de Sentido Incorreto , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
ACS Infect Dis ; 7(6): 1739-1751, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-33826843

RESUMO

The unique ability of Mycobacterium tuberculosis (Mtb) to utilize host lipids such as cholesterol for survival, persistence, and virulence has made the metabolic pathway of cholesterol an area of great interest for therapeutics development. Herein, we identify and characterize two genes from the Cho-region (genomic locus responsible for cholesterol catabolism) of the Mtb genome, chsH3 (Rv3538) and chsB1 (Rv3502c). Their protein products catalyze two sequential stereospecific hydration and dehydrogenation steps in the ß-oxidation of the cholesterol side chain. ChsH3 favors the 22S hydration of 3-oxo-cholest-4,22-dien-24-oyl-CoA in contrast to the previously reported EchA19 (Rv3516), which catalyzes formation of the (22R)-hydroxy-3-oxo-cholest-4-en-24-oyl-CoA from the same enoyl-CoA substrate. ChsB1 is stereospecific and catalyzes dehydrogenation of the ChsH3 product but not the EchA19 product. The X-ray crystallographic structure of the ChsB1 apo-protein was determined at a resolution of 2.03 Å, and the holo-enzyme with bound NAD+ cofactor was determined at a resolution of 2.21 Å. The homodimeric structure is representative of a classical NAD+-utilizing short-chain type alcohol dehydrogenase/reductase, including a Rossmann-fold motif, but exhibits a unique substrate binding site architecture that is of greater length and width than its homologous counterparts, likely to accommodate the bulky steroid substrate. Intriguingly, Mtb utilizes hydratases from the MaoC-like family in sterol side-chain catabolism in contrast to fatty acid ß-oxidation in other species that utilize the evolutionarily distinct crotonase family of hydratases.


Assuntos
Mycobacterium tuberculosis , Colesterol , Coenzima A , Enoil-CoA Hidratase/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Oxirredução
8.
PLoS One ; 16(3): e0249047, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33765066

RESUMO

Mitochondria are commonly viewed as highly elongated organelles with regularly spaced mtDNA genomes organized as compact nucleoids that generate the local transcripts essential for production of mitochondrial ribosomes and key components of the respiratory chain. In contrast, A549 human lung carcinoma cells frequently contain apparently swollen mitochondria harboring multiple discrete mtDNA nucleoids and RNA processing granules in a contiguous matrix compartment. While this seemingly aberrant mitochondrial morphology is akin to "mito-bulbs" previously described in cells exposed to a variety of genomic stressors, it occurs in A549 cells under typical culture conditions. We provide a detailed confocal and super-resolution microscopic investigation of the incidence of such mito-bulbs in A549 cells. Most mito-bulbs appear stable, engage in active replication and transcription, and maintain respiration but feature an elevated oxidative environment. High concentrations of glucose and/or L-glutamine in growth media promote a greater incidence of mito-bulbs. Furthermore, we demonstrate that treatment of A549 cells with TGFß suppresses the formation of mito-bulbs while treatment with a specific TGFß pathway inhibitor substantially increases incidence. This striking heterogeneity of mitochondrial form and function may play an important role in a variety of diseases involving mitochondrial dysfunction.


Assuntos
DNA Mitocondrial/genética , Mitocôndrias/metabolismo , Células A549 , DNA Mitocondrial/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Glucose/farmacologia , Glutamina/farmacologia , Humanos , Potencial da Membrana Mitocondrial , Microscopia Confocal , Mitocôndrias/genética , Dinâmica Mitocondrial/efeitos dos fármacos , Membranas Mitocondriais/metabolismo , RNA/metabolismo , Fator de Crescimento Transformador beta/agonistas , Fator de Crescimento Transformador beta/antagonistas & inibidores , Fator de Crescimento Transformador beta/metabolismo
9.
ACS Infect Dis ; 6(8): 2214-2224, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32649175

RESUMO

Cholesterol is a major carbon source for Mycobacterium tuberculosis (Mtb) during infection, and cholesterol utilization plays a significant role in persistence and virulence within host macrophages. Elucidating the mechanism by which cholesterol is degraded may permit the identification of new therapeutic targets. Here, we characterized EchA19 (Rv3516), an enoyl-CoA hydratase involved in cholesterol side-chain catabolism. Steady-state kinetics assays demonstrated that EchA19 preferentially hydrates cholesterol enoyl-CoA metabolite 3-oxo-chol-4,22-diene-24-oyl-CoA, an intermediate of side-chain ß-oxidation. In addition, succinyl-CoA, a downstream catabolite of propionyl-CoA that forms during cholesterol degradation, covalently modifies targeted mycobacterial proteins, including EchA19. Inspection of a 1.9 Å resolution X-ray crystallography structure of Mtb EchA19 suggests that succinylation of Lys132 and Lys139 may perturb enzymatic activity by modifying the entrance to the substrate binding site. Treatment of EchA19 with succinyl-CoA revealed that these two residues are hotspots for succinylation. Replacement of these specific lysine residues with negatively charged glutamate reduced the rate of catalytic hydration of 3-oxo-chol-4,22-diene-24-oyl-CoA by EchA19, as does succinylation of EchA19. Our findings suggest that succinylation is a negative feedback regulator of cholesterol metabolism, thereby adding another layer of complexity to Mtb physiology in the host. These regulatory pathways are potential noncatabolic targets for antimicrobial drugs.


Assuntos
Mycobacterium tuberculosis , Proteínas de Bactérias/genética , Colesterol , Enoil-CoA Hidratase/genética , Enoil-CoA Hidratase/metabolismo , Cinética , Mycobacterium tuberculosis/metabolismo
10.
Hum Mol Genet ; 29(8): 1292-1309, 2020 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-32191790

RESUMO

As the powerhouses of the eukaryotic cell, mitochondria must maintain their genomes which encode proteins essential for energy production. Mitochondria are characterized by guanine-rich DNA sequences that spontaneously form unusual three-dimensional structures known as G-quadruplexes (G4). G4 structures can be problematic for the essential processes of DNA replication and transcription because they deter normal progression of the enzymatic-driven processes. In this study, we addressed the hypothesis that mitochondrial G4 is a source of mutagenesis leading to base-pair substitutions. Our computational analysis of 2757 individual genomes from two Italian population cohorts (SardiNIA and InCHIANTI) revealed a statistically significant enrichment of mitochondrial mutations within sequences corresponding to stable G4 DNA structures. Guided by the computational analysis results, we designed biochemical reconstitution experiments and demonstrated that DNA synthesis by two known mitochondrial DNA polymerases (Pol γ, PrimPol) in vitro was strongly blocked by representative stable G4 mitochondrial DNA structures, which could be overcome in a specific manner by the ATP-dependent G4-resolving helicase Pif1. However, error-prone DNA synthesis by PrimPol using the G4 template sequence persisted even in the presence of Pif1. Altogether, our results suggest that genetic variation is enriched in G-quadruplex regions that impede mitochondrial DNA replication.


Assuntos
DNA Helicases/genética , DNA Polimerase gama/genética , DNA Primase/genética , Replicação do DNA/genética , DNA Polimerase Dirigida por DNA/genética , Quadruplex G , Enzimas Multifuncionais/genética , DNA Mitocondrial/genética , Genoma Mitocondrial/genética , Guanina/metabolismo , Humanos , Itália , Mitocôndrias/genética , Mutagênese/genética , Mutação/genética , Conformação de Ácido Nucleico , Sequenciamento Completo do Genoma
11.
Protein Sci ; 28(9): 1594-1605, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31309618

RESUMO

Numerous age-related human diseases have been associated with deficiencies in cellular energy production. Moreover, genetic alterations resulting in mitochondrial dysfunction are the cause of inheritable disorders commonly known as mitochondrial diseases. Many of these deficiencies have been directly or indirectly linked to deficits in mitochondrial gene expression. Transcription is an essential step in gene expression and elucidating the molecular mechanisms involved in this process is critical for understanding defects in energy production. For the past five decades, substantial efforts have been invested in the field of mitochondrial transcription. These efforts have led to the discovery of the main protein factors responsible for transcription as well as to a basic mechanistic understanding of the transcription process. They have also revealed various mechanisms of transcriptional regulation as well as the links that exist between the transcription process and downstream processes of RNA maturation. Here, we review the knowledge gathered in early mitochondrial transcription studies and focus on recent findings that shape our current understanding of mitochondrial transcription, posttranscriptional processing, as well as transcriptional regulation in mammalian systems.


Assuntos
Mamíferos/genética , Mitocôndrias/genética , Transcrição Gênica , Animais , Regulação da Expressão Gênica , Humanos , Proteínas Mitocondriais/genética
13.
J Biol Chem ; 294(18): 7488-7502, 2019 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-30890560

RESUMO

Neutral sphingomyelinase 2 (nSMase2) produces the bioactive lipid ceramide and has important roles in neurodegeneration, cancer, and exosome formation. Although nSMase2 has low basal activity, it is fully activated by phosphatidylserine (PS). Previous work showed that interdomain interactions within nSMase2 are needed for PS activation. Here, we use multiple approaches, including small angle X-ray scattering, hydrogen-deuterium exchange-MS, circular dichroism and thermal shift assays, and membrane yeast two-hybrid assays, to define the mechanism mediating this interdomain interactions within nSMase2. In contrast to what we previously assumed, we demonstrate that PS binding at the N-terminal and juxtamembrane regions of nSMase2 rather acts as a conformational switch leading to interdomain interactions that are critical to enzyme activation. Our work assigns a unique function for a class of linkers of lipid-activated, membrane-associated proteins. It indicates that the linker actively participates in the activation mechanism via intramolecular interactions, unlike the canonical linkers that typically aid protein dimerization or localization.


Assuntos
Esfingomielina Fosfodiesterase/metabolismo , Regulação Alostérica , Aminoácidos/química , Domínio Catalítico , Ativação Enzimática , Humanos , Hidroxiureia/farmacologia , Mutação , Conformação Proteica , Saccharomyces cerevisiae/efeitos dos fármacos , Espalhamento a Baixo Ângulo , Esfingomielina Fosfodiesterase/química , Esfingomielina Fosfodiesterase/genética , Difração de Raios X
14.
PLoS One ; 13(11): e0206897, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30427907

RESUMO

Telomeres protect against chromosomal damage. Accelerated telomere loss has been associated with premature aging syndromes such as Werner's syndrome and Dyskeratosis Congenita, while, progressive telomere loss activates a DNA damage response leading to chromosomal instability, typically observed in cancer cells and senescent cells. Therefore, identifying mechanisms of telomere length maintenance is critical for understanding human pathologies. In this paper we demonstrate that mitochondrial dysfunction plays a causal role in telomere shortening. Furthermore, hnRNPA2, a mitochondrial stress responsive lysine acetyltransferase (KAT) acetylates telomere histone H4at lysine 8 of (H4K8) and this acetylation is associated with telomere attrition. Cells containing dysfunctional mitochondria have higher telomere H4K8 acetylation and shorter telomeres independent of cell proliferation rates. Ectopic expression of KAT mutant hnRNPA2 rescued telomere length possibly due to impaired H4K8 acetylation coupled with inability to activate telomerase expression. The phenotypic outcome of telomere shortening in immortalized cells included chromosomal instability (end-fusions) and telomerase activation, typical of an oncogenic transformation; while in non-telomerase expressing fibroblasts, mitochondrial dysfunction induced-telomere attrition resulted in senescence. Our findings provide a mechanistic association between dysfunctional mitochondria and telomere loss and therefore describe a novel epigenetic signal for telomere length maintenance.


Assuntos
Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/metabolismo , Histonas/metabolismo , Mitocôndrias/metabolismo , Encurtamento do Telômero/genética , Telômero/metabolismo , Acetilação , Animais , Linhagem Celular , Transformação Celular Neoplásica/genética , Instabilidade Cromossômica/fisiologia , Epigênese Genética/fisiologia , Fibroblastos , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/genética , Humanos , Lisina/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Mutagênese Sítio-Dirigida , Mutação , Telomerase/metabolismo
15.
Cell Rep ; 22(7): 1935-1944, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29444443

RESUMO

Mammalian mtDNA encodes only 13 proteins, all essential components of respiratory complexes, synthesized by mitochondrial ribosomes. Mitoribosomes contain greatly truncated RNAs transcribed from mtDNA, including a structural tRNA in place of 5S RNA as a scaffold for binding 82 nucleus-encoded proteins, mitoribosomal proteins (MRPs). Cryoelectron microscopy (cryo-EM) studies have determined the structure of the mitoribosome, but its mechanism of assembly is unknown. Our SILAC pulse-labeling experiments determine the rates of mitochondrial import of MRPs and their assembly into intact mitoribosomes, providing a basis for distinguishing MRPs that bind at early and late stages in mitoribosome assembly to generate a working model for mitoribosome assembly. Mitoribosome assembly is a slow process initiated at the mtDNA nucleoid driven by excess synthesis of individual MRPs. MRPs that are tightly associated in the structure frequently join the complex in a coordinated manner. Clinically significant MRP mutations reported to date affect proteins that bind early on during assembly.


Assuntos
Mamíferos/metabolismo , Ribossomos Mitocondriais/metabolismo , Animais , Células HeLa , Humanos , Marcação por Isótopo , Cinética , Proteínas Mitocondriais/metabolismo , Modelos Biológicos , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas/metabolismo
16.
Proc Natl Acad Sci U S A ; 114(28): E5549-E5558, 2017 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-28652336

RESUMO

Neutral sphingomyelinase 2 (nSMase2, product of the SMPD3 gene) is a key enzyme for ceramide generation that is involved in regulating cellular stress responses and exosome-mediated intercellular communication. nSMase2 is activated by diverse stimuli, including the anionic phospholipid phosphatidylserine. Phosphatidylserine binds to an integral-membrane N-terminal domain (NTD); however, how the NTD activates the C-terminal catalytic domain is unclear. Here, we identify the complete catalytic domain of nSMase2, which was misannotated because of a large insertion. We find the soluble catalytic domain interacts directly with the membrane-associated NTD, which serves as both a membrane anchor and an allosteric activator. The juxtamembrane region, which links the NTD and the catalytic domain, is necessary and sufficient for activation. Furthermore, we provide a mechanistic basis for this phenomenon using the crystal structure of the human nSMase2 catalytic domain determined at 1.85-Å resolution. The structure reveals a DNase-I-type fold with a hydrophobic track leading to the active site that is blocked by an evolutionarily conserved motif which we term the "DK switch." Structural analysis of nSMase2 and the extended N-SMase family shows that the DK switch can adopt different conformations to reposition a universally conserved Asp (D) residue involved in catalysis. Mutation of this Asp residue in nSMase2 disrupts catalysis, allosteric activation, stimulation by phosphatidylserine, and pharmacological inhibition by the lipid-competitive inhibitor GW4869. Taken together, these results demonstrate that the DK switch regulates ceramide generation by nSMase2 and is governed by an allosteric interdomain interaction at the membrane interface.


Assuntos
Sítio Alostérico , Ceramidas/biossíntese , Esfingomielina Fosfodiesterase/química , Compostos de Anilina/química , Compostos de Benzilideno/química , Domínio Catalítico , Membrana Celular/metabolismo , Cristalografia por Raios X , Humanos , Lipídeos/química , Células MCF-7 , Ligação Proteica , Dobramento de Proteína , Saccharomyces cerevisiae , Transdução de Sinais
17.
J Chem Inf Model ; 57(4): 864-874, 2017 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-28287728

RESUMO

A general method is presented to characterize the helical properties of potentially irregular helices, such as those found in protein secondary and tertiary structures and nucleic acids. The method was validated using artificial helices with varying numbers of points, points per helical turn, pitch, and radius. The sensitivity of the method was validated by applying increasing amounts of random perturbation to the coordinates of these helices; 399 360 helices in total were evaluated. In addition, the helical parameters of protein secondary structure elements and nucleic acid helices were analyzed. Generally, at least seven points were required to recapitulate the parameters of a helix using our method. The method can also be used to calculate the helical parameters of nucleic acid-binding proteins, like TALE, enabling direct analysis of their helix complementarity to sequence-dependent DNA distortions.


Assuntos
Modelos Moleculares , Conformação de Ácido Nucleico , Conformação Proteica em alfa-Hélice , DNA/química , Proteínas/química , RNA/química , Rotação
18.
Cell Discov ; 2: 16045, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27990297

RESUMO

Reduced mitochondrial DNA copy number, mitochondrial DNA mutations or disruption of electron transfer chain complexes induce mitochondria-to-nucleus retrograde signaling, which induces global change in nuclear gene expression ultimately contributing to various human pathologies including cancer. Recent studies suggest that these mitochondrial changes cause transcriptional reprogramming of nuclear genes although the mechanism of this cross talk remains unclear. Here, we provide evidence that mitochondria-to-nucleus retrograde signaling regulates chromatin acetylation and alters nuclear gene expression through the heterogeneous ribonucleoprotein A2 (hnRNAP2). These processes are reversed when mitochondrial DNA content is restored to near normal cell levels. We show that the mitochondrial stress-induced transcription coactivator hnRNAP2 acetylates Lys 8 of H4 through an intrinsic histone lysine acetyltransferase (KAT) activity with Arg 48 and Arg 50 of hnRNAP2 being essential for acetyl-CoA binding and acetyltransferase activity. H4K8 acetylation at the mitochondrial stress-responsive promoters by hnRNAP2 is essential for transcriptional activation. We found that the previously described mitochondria-to-nucleus retrograde signaling-mediated transformation of C2C12 cells caused an increased expression of genes involved in various oncogenic processes, which is retarded in hnRNAP2 silenced or hnRNAP2 KAT mutant cells. Taken together, these data show that altered gene expression by mitochondria-to-nucleus retrograde signaling involves a novel hnRNAP2-dependent epigenetic mechanism that may have a role in cancer and other pathologies.

19.
Cell Chem Biol ; 23(9): 1103-1112, 2016 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-27593110

RESUMO

Protein kinases are attractive therapeutic targets because their dysregulation underlies many diseases, including cancer. The high conservation of the kinase domain and the evolution of drug resistance, however, pose major challenges to the development of specific kinase inhibitors. We recently discovered selective Src kinase inhibitors from a DNA-templated macrocycle library. Here, we reveal the structural basis for how these inhibitors retain activity against a disease-relevant, drug-resistant kinase mutant, while maintaining Src specificity. We find that these macrocycles display a degree of modularity: two of their three variable groups interact with sites on the kinase that confer selectivity, while the third group interacts with the universally conserved catalytic lysine and thereby retains the ability to inhibit the "gatekeeper" kinase mutant. We also show that these macrocycles inhibit migration of MDA-MB-231 breast tumor cells. Our findings establish intracellular kinase inhibition by peptidic macrocycles, and inform the development of potent and specific kinase inhibitors.


Assuntos
Compostos Macrocíclicos/farmacologia , Oligopeptídeos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Quinases da Família src/antagonistas & inibidores , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Compostos Macrocíclicos/química , Modelos Moleculares , Estrutura Molecular , Oligopeptídeos/química , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade , Quinases da Família src/metabolismo
20.
EMBO J ; 35(18): 2045-59, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27481934

RESUMO

8-oxo-7,8-dihydroxy-2'-deoxyguanosine (8-oxo-dG) has high mutagenic potential as it is prone to mispair with deoxyadenine (dA). In order to maintain genomic integrity, post-replicative 8-oxo-dG:dA mispairs are removed through DNA polymerase lambda (Pol λ)-dependent MUTYH-initiated base excision repair (BER). Here, we describe seven novel crystal structures and kinetic data that fully characterize 8-oxo-dG bypass by Pol λ. We demonstrate that Pol λ has a flexible active site that can tolerate 8-oxo-dG in either the anti- or syn-conformation. Importantly, we show that discrimination against the pro-mutagenic syn-conformation occurs at the extension step and identify the residue responsible for this selectivity. This residue acts as a kinetic switch, shunting repair toward long-patch BER upon correct dCMP incorporation, thus enhancing repair efficiency. Moreover, this switch also provides a potential mechanism to increase repair fidelity of MUTYH-initiated BER.


Assuntos
Pareamento Incorreto de Bases , DNA Polimerase beta/química , DNA Polimerase beta/metabolismo , Reparo do DNA , Desoxiguanosina/análogos & derivados , 8-Hidroxi-2'-Desoxiguanosina , Domínio Catalítico , Cristalografia por Raios X , Desoxiguanosina/metabolismo , Humanos , Cinética , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...