Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomark Res ; 11(1): 94, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37864266

RESUMO

Small extracellular vesicles (sEVs) in the blood of cancer patients contain higher amounts of tumor markers than those identified as free-circulating. miRNAs have significant biomedical relevance due to their high stability and feasible detection. However, there is no reliable endogenous control available to measure sEVs-miRNA content, impairing the acquisition of standardized consistent measurements in cancer liquid biopsy. In this study, we identified three miRNAs from a panel of nine potential normalizers that emerged from a comprehensive analysis comparing the sEV-miRNA profile of six lung and ovarian human cancer cell lines in the absence of or under different conditions. Their relevance as normalizers was tested in 26 additional human cancer cell lines from nine different tumor types undergoing chemotherapy or radiotherapy treatment. The validation cohorts were comprised of 242 prospective plasma and ascitic fluid samples from three different human tumor types. Variability and normalization properties were tested in comparison to miR-16, the most used control to normalize free-circulating miRNAs in plasma. Our results indicate that miR-151a is consistently represented in small extracellular vesicles with minimal variability compared to miR-16, providing a novel normalizer to measure small extracellular vesicle miRNA content that will benefit liquid biopsy in cancer patients.

2.
Int J Mol Sci ; 24(14)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37511221

RESUMO

Despite advances in non-small cell lung cancer (NSCLC) research, this is still the most common cancer type that has been diagnosed up to date. microRNAs have emerged as useful clinical biomarkers in both tissue and liquid biopsy. However, there are no reliable predictive biomarkers for clinical use. We evaluated the preclinical use of seven candidate miRNAs previously identified by our group. We collected a total of 120 prospective samples from 88 NSCLC patients. miRNA levels were analyzed via qRT-PCR from tissue and blood samples. miR-124 gene target prediction was performed using RNA sequencing data from our group and interrogating data from 2952 NSCLC patients from two public databases. We found higher levels of all seven miRNAs in tissue compared to plasma samples, except for miR-124. Our findings indicate that levels of miR-124, both free-circulating and within exosomes, are increased throughout the progression of the disease, suggesting its potential as a marker of disease progression in both advanced and early stages. Our bioinformatics approach identified KPNA4 and SPOCK1 as potential miR-124 targets in NSCLC. miR-124 levels can be used to identify early-stage NSCLC patients at higher risk of relapse.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Exossomos , Neoplasias Pulmonares , MicroRNAs , Humanos , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Prognóstico , Estudos Prospectivos , Biomarcadores Tumorais/metabolismo , Recidiva Local de Neoplasia/metabolismo , MicroRNAs/metabolismo , Exossomos/metabolismo , Biópsia Líquida , Proteoglicanas/metabolismo , alfa Carioferinas/metabolismo
3.
Eur J Med Genet ; 64(4): 104170, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33618039

RESUMO

X-linked myotubular myopathy (XLMTM; OMIM 310400) is a centronuclear congenital muscular disorder of X-linked recessive inheritance. Although female carriers are typically asymptomatic, affected heterozygous females have been described. Here, we describe the case of a sporadic female patient with suspicion of centronuclear myopathy and a heterozygous large deletion at Xq28 encompassing the MAMLD1, MTM1, MTMR1, CD99L2, and HMGB3 genes. The deletion was first detected using a custom next generation sequencing (NGS)-based multigene panel and finally characterized by comparative genomic hybridization array and multiplex ligation probe assay techniques. In this patient we have confirmed, by MTM1 mRNA quantification, a MTM1 gene expression less than the expected 50 percent in patient muscle. The significant 20% reduction in MTM1 mRNA expression in muscle, precludes low level of the normal myotubularin protein as the cause of the phenotype in this heterozygous female. We have also found that BIN1 expression in patient muscle biopsy was significantly increased, and postulate that BIN1 expression will be increased in XLMTM patient muscle as an attempt to maintain muscle function.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Deleção Cromossômica , Miopatias Congênitas Estruturais/genética , Proteínas Nucleares/genética , Proteínas Tirosina Fosfatases não Receptoras/genética , Proteínas Supressoras de Tumor/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adolescente , Cromossomos Humanos X/genética , Feminino , Heterozigoto , Humanos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Miopatias Congênitas Estruturais/metabolismo , Miopatias Congênitas Estruturais/patologia , Proteínas Nucleares/metabolismo , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Proteínas Supressoras de Tumor/metabolismo
4.
Antioxidants (Basel) ; 9(6)2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32492865

RESUMO

Cancer is one of the leading causes of death worldwide and it can affect any part of the organism. It arises as a consequence of the genetic and epigenetic changes that lead to the uncontrolled growth of the cells. The epigenetic machinery can regulate gene expression without altering the DNA sequence, and it comprises methylation of the DNA, histones modifications, and non-coding RNAs. Alterations of these gene-expression regulatory elements can be produced by an imbalance of the intracellular environment, such as the one derived by oxidative stress, to promote cancer development, progression, and resistance to chemotherapeutic treatments. Here we review the current literature on the effect of oxidative stress in the epigenetic machinery, especially over the largely unknown ncRNAs and its consequences toward cancer development and progression.

5.
Cancers (Basel) ; 12(4)2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-32224864

RESUMO

Despite often leading to platinum resistance, platinum-based chemotherapy continues to be the standard treatment for many epithelial tumors. In this study we analyzed and validated the cytogenetic alterations that arise after treatment in four lung and ovarian paired cisplatin-sensitive/resistant cell lines by 1-million microarray-based comparative genomic hybridization (array-CGH) and qRT-PCR methodologies. RNA-sequencing, functional transfection assays, and gene-pathway activity analysis were used to identify genes with a potential role in the development of this malignancy. The results were further explored in 55 lung and ovarian primary tumors and control samples, and in two extensive in silico databases. Long-term cell exposure to platinum induces the frequent deletion of ITF2 gene. Its expression re-sensitized tumor cells to platinum and recovered the levels of Wnt/ß-catenin transcriptional activity. ITF2 expression was also frequently downregulated in epithelial tumors, predicting a worse overall survival. We also identified an inverse correlation between ITF2 and HOXD9 expression, revealing that Non-small cell lung cancer (NSCLC) patients with lower expression of HOXD9 had a better overall survival rate. We defined the implication of ITF2 as a molecular mechanism behind the development of cisplatin resistance probably through the activation of the Wnt-signaling pathway. This data highlights the possible role of ITF2 and HOXD9 as novel therapeutic targets for platinum resistant tumors.

6.
Transl Res ; 200: 1-17, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30053382

RESUMO

Adjuvant chemotherapy for solid tumors based on platinum-derived compounds such as cisplatin is the treatment of choice in most cases. Cisplatin triggers signaling pathways that lead to cell death, but it also induces changes in tumor cells that modify the therapeutic response, thereby leading to cisplatin resistance. We have recently reported that microRNA-7 is silenced by DNA methylation and is involved in the resistance to platinum in cancer cells through the action of the musculoaponeurotic fibrosarcoma oncogene family, protein G (MAFG). In the present study, we first confirm the miR-7 epigenetic regulation of MAFG in 44 normal- and/or tumor-paired samples in non-small-cell lung cancer (NSCLC). We also provide translational evidence of the role of MAFG and the clinical outcome in NSCLC by the interrogation of two extensive in silico databases of 2019 patients. Moreover, we propose that MAFG-mediated resistance could be conferred due to lower reactive oxygen species production after cisplatin exposure. We developed specifically selected aptamers against MAFG, with high sensitivity to detect the protein at a nuclear level probed by aptacytochemistry and histochemistry analyses. The inhibition of MAFG activity through the action of the specific aptamer apMAFG6F increased the levels of reactive oxygen species production and the sensitivity to cisplatin. We report first the specific nuclear identification of MAFG as a novel detection method for diagnosis in NSCLC, and then we report that MAFG modulates the redox response and confers cell protection against free radicals generated after platinum administration, thus also being a promising therapeutic target.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Cisplatino/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Fator de Transcrição MafG/antagonistas & inibidores , Proteínas Repressoras/antagonistas & inibidores , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/genética , Aptâmeros de Nucleotídeos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Clonagem Molecular , Metilação de DNA , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/fisiologia , Epigênese Genética/genética , Expressão Gênica , Inativação Gênica , Células HEK293 , Humanos , Neoplasias Pulmonares/genética , Fator de Transcrição MafG/genética , Fator de Transcrição MafG/fisiologia , MicroRNAs/genética , MicroRNAs/fisiologia , Oxirredução , Prognóstico , Espécies Reativas de Oxigênio/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/fisiologia , Análise de Sequência de DNA , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...