Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Membranes (Basel) ; 14(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38248702

RESUMO

The demand for natural products in the treatment of dermatological pathologies has boosted the use of bioactive substances such as lavender essential oil (LEO), which stands out for its anti-inflammatory and antioxidant properties and its antimicrobial potential. Biopolymers such as chitosan (CHT) and alginate (ALG) are biodegradable and biocompatible and have proven their viability in biomedical applications such as skin regeneration. The inhibitory effect of LEO on the growth of skin-related bacterial species Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa and the fungus Candida albicans was studied by incorporating 1% v/v LEO encapsulated in CHT, ALG, and CHT/ALG membranes. Despite the verification of the antimicrobial effect of all type of membranes, no synergistic effect was observed following the addition of LEO. S. aureus and P. aeruginosa showed the most growth on the different substrates and C. albicans demonstrated the highest inhibition. This is a first approach using microorganisms isolated from clinical samples or skin microbiota. Further investigation would be advisable using more clinical strains for each microorganism to validate their biomedical applicability.

2.
Life (Basel) ; 13(7)2023 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-37511809

RESUMO

The present work studies the influence of pH on the stability of thiosulfinates, compounds responsible for the bacteriostatic properties shown by ethanolic and acetonic garlic extracts (EGE and AGE) against the in vitro growth of Helicobacter pylori (Hp), a bacterium which is implicated in the etiology of diverse gastrointestinal diseases. The influence of pH and time on the stability of thiosulfinates and the microbiological activities of EGE and AGE has been evaluated at human body temperature (37 °C) and in a pH range of 0.9-4.7. A marked decrease in thiosulfinate concentration was observed in a relatively short time at pH values below 2.0. However, at pH values over 2.0, the samples maintained 70% of thiosulfinate concentration for 12 h. The inhibition halo diameters showed a maximum value at pH 2.50, with an inhibition halo of 28.94 ± 0.61 mm. The reduction in the activity at pH values below 2.0 was particularly remarkable. These results suggest that, for medical application, the pH of the selected extracts must only be maintained above 2 to maintain a high level of antibacterial activity. This fact would overcome the need for proton pump inhibitors and/or antibiotics during the treatment of Hp infections in human patients.

3.
Molecules ; 28(9)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37175099

RESUMO

Biopolymers such as chitosan (CHT) or alginate (ALG) are among the most prominent for health-related applications due to their broad bioactivity. Their combination for the preparation of membranes is hereby proposed as an application for wound healing with the incorporation of lavender essential oil (LEO), widely known for its antioxidant and antimicrobial properties. The preparation of CHT, CHT + LEO, ALG, ALG + LEO, and CHT/ALG + LEO membranes was accomplished, and its composition was analyzed using Fourier Transform Infrared Spectroscopy (FTIR). The water absorption capacity and oil release profile of the membranes revealed higher water uptake capacity when a lower LEO release was obtained. The combined CHT/ALG + LEO film showed a water uptake percentage of 638% after 48 h and a maximum LEO release concentration of 42 mg/L. Cytotoxicity and biocompatibility of the prepared membranes were studied using a HaCaT cell line, with an assessment of cell viability regarding film leachables, DNA quantification, and DAPI-phalloidin staining. The results revealed that the indirect contact of the prepared membranes via its leachables does not compromise cell viability, and upon direct contact, cells do not adhere or proliferate on the surface of the membranes. Moreover, the CHT/ALG + LEO membrane increases cell proliferation, making it suitable for applications in wound healing.


Assuntos
Quitosana , Quitosana/química , Alginatos/química , Cicatrização , Água
4.
Polymers (Basel) ; 15(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36987369

RESUMO

Non-isocyanate polyurethanes (NIPUs) based on biobased polyamines and polycarbonates are a sustainable alternative to conventional polyurethanes (PU). This article discloses a novel method to control the crosslinking density of fully biobased isocyanate-free polyurethanes, synthesized from triglycerides carbonated previously in scCO2 and different diamines, such as ethylenediamine (EDA), hexamethylenediamine (HMDA) and PriamineTM-1075 (derived from a dimerized fatty acid). As capping substances, water or bioalcohols are used in such a way that the crosslinking density can be adjusted to suit the requirements of the intended application. An optimization of the NIPU synthesis procedure is firstly carried out, establishing the polymerization kinetics and proposing optimal conditions set for the synthesis of the NIPUs. Then, the influence of the partial blocking of the active polymerization sites of the carbonated soybean oil (CSBO), using monofunctional amines, on the physical properties of the NIPUS is explored. Finally, the synthesis of fully biobased NIPUs with a targeted crosslinking density is achieved using hybrid NIPUs, employing partially carbonated oil and H2O or ethanol as blockers to achieve the desired physical properties in a very precise manner.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...