RESUMO
Chronic obstructive pulmonary disease (COPD) patients manifest muscle dysfunction and impaired muscle oxidative capacity, which result in reduced exercise capacity and poor health status. The aim of this study was to compare the physical performance, systemic inflammation, and oxidative stress of patients with moderate COPD, and to associate physical performance with inflammatory and oxidative stress plasma markers. Twenty CONTROL (n = 10) and moderate COPD (n = 10) patients participated in this study. Systematic inflammation and oxidative stress plasma markers, maximal aerobic capacity (VO2peak), and maximal isometric strength (MVIC) of the knee extensor (KE) muscles were measured. VO2peak was 31.3% greater in CONTROL compared to COPD (P = 0.006). The MVIC strength of the KE was 43.9% greater in CONTROL compared to COPD (P = 0.002). Tumor necrosis factor-alpha (TNF-α) was 79.6% greater in COPD compared to CONTROL (P < 0.001). Glutathione peroxidase activity (GPx) activity was 27.5% lesser in COPD compared to CONTROL (P = 0.05). TNF-α concentration was correlated with KE MVC strength (R = -0.48; P = 0.045) and VO2peak (R = -0.58; P = 0.01). Meanwhile, malondialdehyde (MDA) and GPx activity were not associated with KE strength or VO2peak (P = 0.74 and P = 0.14, respectively). COPD patients showed lesser muscle strength and aerobic capacity than healthy control individuals. Furthermore, patients with COPD showed greater systemic inflammation and lesser antioxidant capacity than healthy counterparts. A moderate association was evident between levels of systemic inflammation and physical performance variables.
Assuntos
Doença Pulmonar Obstrutiva Crônica , Fator de Necrose Tumoral alfa , Humanos , Estresse Oxidativo/fisiologia , Antioxidantes/metabolismo , Inflamação , Desempenho Físico FuncionalRESUMO
ABSTRACT: Valdes, O, Inzulza, S, Collao, N, Garcia-Vicencio, S, Tufano, JJ, Earp, J, Venegas, M, and Peñailillo, L. Eccentric cycling is an alternative to Nordic hamstring exercise to increase the neuromuscular function of knee flexors in untrained men. J Strength Cond Res 37(11): 2158-2166, 2023-Nordic hamstring exercise (NHE) has been proposed to reduce knee flexor (KF) injuries. However, submaximal alternatives to NHE are necessary for the clinical or weaker population. The aim of this study was to compare the effects of Nordic hamstring training (NHT) and eccentric cycling (ECC) training on the neuromuscular function of the KF. Twenty healthy men (27.7 ± 3.5 years) were randomly assigned into 2 groups that performed 10 training sessions (2-3 sessions·week-1) of either NHT (n = 10) or ECC (n = 10). Maximal voluntary isometric contraction of the KF and knee extensor (KE) muscles (MVICKF and MVICKE) was measured, and the hamstring/quadriceps strength (H/Q) ratio was calculated. Furthermore, changes in NHE maximum reaction force (NHE-MRFKF), NHE break-point angle (NHE-BPA), and muscle activity of the semitendinosus (STEMG) and biceps femoris (BFEMG) during the NHE after the interventions were compared. Although no group × time effects were observed (p = 0.09-0.70), but time effects were found for all variables. Pairwise comparisons revealed that MVICKF (+16.9%; p = 0.02), H/Q ratio (+11.8%; p = 0.01), NHE-MRFKF (+19.8%; p = 0.005), and NHE-BPA (+30.8%; p = 0.001) increased after ECC, whereas NHE-MRFKF (+9.7%; p = 0.003), NHE-BPA (+35.5%; p = 0.0002), and STEMG (+33.7%; p = 0.02) increased after NHT. A group × time effect was observed (p = 0.003) in BFEMG, revealing an increase only after ECC (+41.1%; p < 0.0001). Similar neuromuscular adaptations were found after both training modalities. Therefore, ECC provides similar adaptations as NHT and may serve as an alternative form of KF training for those unable to perform NHE.
Assuntos
Músculos Isquiossurais , Masculino , Humanos , Músculos Isquiossurais/fisiologia , Força Muscular/fisiologia , Joelho , Articulação do Joelho/fisiologia , Exercício Físico/fisiologiaRESUMO
This study compared the effects of contralateral eccentric-only (ECC) and concentric-/eccentric-coupled resistance training (CON-ECC) of the elbow flexors on immobilized arm. Thirty healthy participants (18-34 y) were randomly allocated to immobilization only (CTRL; n = 10), immobilization and ECC (n = 10), or immobilization and CON-ECC group (n = 10). The non-dominant arms of all participants were immobilized (8 h·day-1 ) for 4 weeks, during which ECC and CON-ECC were performed by the dominant (non-immobilized) arm 3 times a week (3-6 sets of 10 repetitions per session) with an 80%-120% and 60%-90% of one concentric repetition maximum (1-RM) load, respectively, matching the total training volume. Arm circumference, 1-RM and maximal voluntary isometric contraction (MVIC) strength, biceps brachii surface electromyogram amplitude (sEMGRMS ), rate of force development (RFD), and joint position sense (JPS) were measured for both arms before and after immobilization. CTRL showed decreases (P < .05) in MVIC (-21.7%), sEMGRMS (-35.2%), RFD (-26.0%), 1-RM (-14.4%), JPS (-87.4%), and arm circumference (-5.1%) of the immobilized arm. These deficits were attenuated or eliminated by ECC and CON-ECC, with greater effect sizes for ECC than CON-ECC in MVIC (0.29: +12.1%, vs -0.18: -0.1%) and sEMGRMS (0.31:17.5% vs -0.15: -5.9%). For the trained arm, ECC showed greater effect size for MVIC than CON-ECC (0.47 vs 0.29), and increased arm circumference (+2.9%), sEMGRMS (+77.9%), and RDF (+31.8%) greater (P < .05) than CON-ECC (+0.6%, +15.1%, and + 15.8%, respectively). The eccentric-only resistance training of the contralateral arm was more effective to counteract the negative immobilization effects than the concentric-eccentric training.