Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 22507, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-38110443

RESUMO

In addition to genetic adaptative mechanisms, plants retrieve additional help from the surrounding microbiome, especially beneficial bacterial strains (PGPB) that contribute to plant fitness by modulating plant physiology to fine-tune adaptation to environmental changes. The aim of this study was to determine the mechanisms by which the PGPB Bacillus G7 stimulates the adaptive mechanisms of Olea europaea plantlets to high-salinity conditions, exploring changes at the physiological, metabolic and gene expression levels. On the one hand, G7 prevented photosynthetic imbalance under saline stress, increasing the maximum photosynthetic efficiency of photosystem II (Fv/Fm) and energy dissipation (NPQ) and protecting against photooxidative stress. On the other hand, despite the decrease in effective PSII quantum yield (ΦPSII), net carbon fixation was significantly improved, resulting in significant increases in osmolytes and antioxidants, suggesting an improvement in the use of absorbed energy. Water use efficiency (WUE) was significantly improved. Strong genetic reprogramming was evidenced by the transcriptome that revealed involvement of the ABA-mediated pathway based on upregulation of ABA synthesis- and ABA-sensing-related genes together with a strong downregulation of the PLC2 phosphatase family, repressors of ABA-response elements and upregulation of ion homeostasis-related genes. The ion homeostasis response was activated faster in G7-treated plants, as suggested by qPCR data. All these results reveal the multitargeted improvement of plant metabolism under salt stress by Bacillus G7, which allows growth under water limitation conditions, an excellent trait to develop biofertilizers for agriculture under harsh conditions supporting the use of biofertilizers among the new farming practices to meet the increasing demand for food.


Assuntos
Bacillus , Olea , Olea/metabolismo , Bacillus/metabolismo , Água/metabolismo , Fotossíntese/fisiologia , Estresse Oxidativo , Estresse Salino , Estresse Fisiológico
2.
Biology (Basel) ; 12(7)2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37508334

RESUMO

Physiological, metabolic, and genetic changes produced by two plant growth promoting rhizobacteria (PGPR) Pseudomonas sp. (internal code of the laboratory: N 5.12 and N 21.24) inoculated in tomato plants subjected to moderate water stress (10% polyethylene glycol-6000; PEG) were studied. Photosynthesis efficiency, photosynthetic pigments, compatible osmolytes, reactive oxygen species (ROS) scavenging enzymes activities, oxidative stress level and expression of genes related to abscisic acid synthesis (ABA; 9-cis-epoxycarotenoid dioxygenase NCDE1 gene), proline synthesis (Pyrroline-5-carboxylate synthase P5CS gene), and plasma membrane ATPase (PM ATPase gene) were measured. Photosynthetic efficiency was compromised by PEG, but bacterial-inoculated plants reversed the effects: while N5.12 increased carbon fixation (37.5%) maintaining transpiration, N21.24 increased both (14.2% and 31%), negatively affecting stomatal closure, despite the enhanced expression of NCDE1 and plasma membrane ATPase genes, evidencing the activation of different adaptive mechanisms. Among all parameters evaluated, photosynthetic pigments and antioxidant enzymes guaiacol peroxidase (GPX) and ascorbate peroxidase (APX) responded differently to both strains. N 5.12 increased photosynthetic pigments (70% chlorophyll a, 69% chlorophyll b, and 65% carotenoids), proline (33%), glycine betaine (4.3%), and phenolic compounds (21.5%) to a greater extent, thereby decreasing oxidative stress (12.5% in Malondialdehyde, MDA). Both bacteria have highly beneficial effects on tomato plants subjected to moderate water stress, improving their physiological state. The use of these bacteria in agricultural production systems could reduce the amount of water for agricultural irrigation without having a negative impact on food production.

3.
Front Microbiol ; 13: 1005865, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36267177

RESUMO

Improvement of plant adaptation by beneficial bacteria (PGPB) may be achieved by triggering multiple pathways to overcome the environmental stress on plant's growth cycle, activating plant's metabolism. The present work reports the differential ability of three Bacillus strains to trigger olive tree metabolism, among which, only H47 was outstanding increasing iridoid and flavonol concentration. One-year old olive seedlings grown open air, under harsh conditions of water shortage in saline soils, were root-inoculated with three Bacillus PGPB strains throughout a 12-month period after which, photosynthesis was determined; photosynthetic pigments and bioactive secondary metabolites (iridoids and flavonols) were analyzed, and a study of gene expression of both pathways involved was undertaken to unravel molecular targets involved in the activation. All three strains increased plant fitness based on photosynthetic values, increasing energy dissipation capacity to lower oxidative stress; only H47 increased CO2 fixation and transpiration. Bacillus H47 was found to trigger synthases in the DOXP pathway (up to 5-fold in DOXP-synthase, 3.5-fold in Iridoid synthase, and 2-fold in secologanin synthase) associated to a concomitant increase in iridoids (up to 5-fold in oleuropein and 2-fold in its precursor secologanin). However, despite the 2-fold increases detected in the two predominant flavonols, gene expression was not enhanced, suggesting involvement of a pulse activation model proposed for innate immunity. Furthermore, the activity of leaf extracts to inhibit Angiotensin Converting Enzyme was evaluated, to explore further uses of plant debris with higher added value. Despite the increases in iridoids, leaf extracts from H47 did not increase ACE inhibition, and still, increased antihypertensive potential in oil obtained with this strain is to be explored, as leaves are the source for these metabolites which further translocate to fruits. In summary, Bacillus H47 is an effective strain to increase plant adaptation to dry and saline environments, activates photosynthesis and secondary metabolism in olive tree.

4.
Plants (Basel) ; 11(9)2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35567247

RESUMO

Exposure to ultraviolet-B (UV-B) radiation can lead to oxidative damage in plants, increasing reactive oxygen species (ROS) production. To overcome ROS burst, plants have antioxidant mechanisms related to ROS scavenging which can be improved by elicitation with biological agents or derived molecules (elicitors), as they can trigger a physiological alert state called "priming". This work describes the effects of lipo-chitooligosaccharides (LCOs) treatment applied to tomato plants under UV-B stress. The LCOs used in the study are produced by three species of the genus Ensifer (formerly Sinorhizobium) (SinCEU-1, SinCEU-2, and SinCEU-3) were assayed on tomato plants under UV-B stress. LCOs were able to significantly increase most of the enzymatic activities related to ROS scavenging while non-enzymatic antioxidants were not modified. This response was associated with a lower oxidative stress, according to malondialdehyde (MDA) levels and the higher antioxidant capacity of the plants. Furthermore, the photosynthetic efficiency of LCOs-treated plants indicated a better physiological state than the control plants. Therefore, although more studies and deepening of certain aspects are necessary, LCOs have shown great potential to protect plants from high UV-B radiation conditions.

5.
Front Microbiol ; 12: 672751, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34489881

RESUMO

A novel Pseudomonas, designated strain BBB001T, an aerobic, rod-shaped bacterium, was isolated from the rhizosphere of Nicotiana glauca in Las Palmas Gran Canaria, Spain. Genomic analysis revealed that it could not be assigned to any known species of Pseudomonas, so the name Pseudomonas palmensis sp. nov. was proposed. A 16S rRNA gene phylogenetic analysis suggested affiliation to the Pseudomonas brassicae group, being P. brassicae MAFF212427 T the closest related type strain. Upon genomic comparisons of both strains, all values were below thresholds established for differentiation: average nucleotide identity (ANI, 88.29%), average amino acid identity (AAI, 84.53%), digital DNA-DNA hybridization (dDDH, 35.4%), and TETRA values (0.98). When comparing complete genomes, a total of 96 genes present exclusively in BBB001T were identified, 80 of which appear associated with specific subsystems. Phenotypic analysis has shown its ability to assimilate glucose, potassium gluconate, capric acid malate, trisodium citrate, and phenylacetic acid; it was oxidase positive. It is able to produce auxins and siderophores in vitro; its metabolic profile based on BIOLOG Eco has shown a high catabolic capacity. The major fatty acids accounting for 81.17% of the total fatty acids were as follows: C16:0 (33.29%), summed feature 3 (22.80%) comprising C16:1 ω7c and C16:1 ω6c, summed feature 8 (13.66%) comprising C18:1 ω7c, and C18:1ω6c and C17:0 cyclo (11.42%). The ability of this strain to improve plant fitness was tested on tomato and olive trees, demonstrating a great potential for agriculture as it is able to trigger herbaceous and woody species. First, it was able to improve iron nutrition and growth on iron-starved tomatoes, demonstrating its nutrient mobilization capacity; this effect is related to its unique genes related to iron metabolism. Second, it increased olive and oil yield up to 30% on intensive olive orchards under water-limiting conditions, demonstrating its capacity to improve adaptation to adverse conditions. Results from genomic analysis together with differences in phenotypic features and chemotaxonomic analysis support the proposal of strain BBB001T (=LMG 31775T = NCTC 14418T) as the type strain of a novel species for which the name P. palmensis sp. nov is proposed.

6.
Plants (Basel) ; 10(2)2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33572123

RESUMO

AIMS: to discover the interrelationship between growth, protection and photosynthesis induced by Pseudomonas fluorescens N21.4 in tomato (Lycopersicum sculentum) challenged with the leaf pathogen Xanthomonas campestris, and to define its priming fingerprint. METHODS: Photosynthesis was determined by fluorescence; plant protection was evaluated by relative disease incidence, enzyme activities by specific colorimetric assays and gene expression by qPCR. Changes in Reactive Oxygen Species (ROS) scavenging cycle enzymes and pathogenesis related protein activity and expression were determined as metabolic and genetic markers of induction of systemic resistance. RESULTS: N21.4 significantly protected plants and increased dry weight. Growth increase is supported by significant increases in photochemical quenching together with significant decreases in energy dissipation (Non-Photochemical Quenching, NPQ). Protection was associated with changes in ROS scavenging cycle enzymes, which were significantly increased on N21.4 + pathogen challenged plants, supporting the priming effect. Superoxide Dismutase (SOD) was a good indicator of biotic stress, showing similar levels in pathogen- and N21.4-treated plants. Similarly, the activity of defense-related enzymes, ß-1,3-glucanase and chitinase significantly increased in post-pathogen challenge state; changes in gene expression were not coupled to activity. CONCLUSIONS: protection does not compromise plant growth; N21.4 priming fingerprint is defined by enhanced photochemical quenching and decreased energy dissipation, enhanced chlorophylls, primed ROS scavenging cycle enzyme activity, and glucanase and chitinase activity.

7.
J Sci Food Agric ; 101(1): 205-214, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-32623714

RESUMO

BACKGROUND: The beneficial rhizobacterium, Pseudomonas fluorescens N 21.4, and its metabolic elicitors were inoculated in commercial cultivars of blackberry plants (Rubus cv. Loch Ness). Phenolic compounds present in red and black fruit and the expression of structural marker genes of the phenylpropanoid pathway during fruit ripening were studied. RESULTS: An inverse relationship between gene expression and accumulation of metabolites was seen, except for the RuDFR gene, which had a direct correlation with cyanidin 3-O-glucoside synthesis, increasing its content 1.3 times when RuDFR was overexpressed in the red fruit of plants inoculated with the metabolic elicitors of P. fluorescens N 21.4, compared with red fruit of plants inoculated with N 21.4. The RuCHS gene also had a fundamental role in the accumulation of metabolites. Both rhizobacterium and metabolic elicitors triggered the flavonoid metabolism, enhancing the catechin and epicatechin content between 1.1 and 1.6 times in the case of red fruit and between 1.1 and 1.8 times in the case of black fruit. Both treatments also boosted the anthocyanin, quercetin, and kaempferol derivative content, highlighting the effects of metabolic elicitors in red fruit and the effects of live rhizobacterium in black fruit. CONCLUSION: The metabolic elicitors' capacity to modulate gene expression and to increase secondary metabolites content was demonstrated. This work therefore suggests that they are effective, affordable, easily manageable, and ecofriendly plant inoculants that complement, or are alternatives to, beneficial rhizobacteria. © 2020 Society of Chemical Industry.


Assuntos
Flavonoides/química , Frutas/química , Frutas/metabolismo , Pseudomonas fluorescens/fisiologia , Rubus/microbiologia , Produção Agrícola , Flavonoides/metabolismo , Frutas/crescimento & desenvolvimento , Frutas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Rubus/química , Rubus/crescimento & desenvolvimento , Rubus/metabolismo , Metabolismo Secundário
8.
Plants (Basel) ; 9(12)2020 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-33302428

RESUMO

The use of beneficial rhizobacteria (bioeffectors) and their derived metabolic elicitors are efficient biotechnological alternatives in plant immune system elicitation. This work aimed to check the ability of 25 bacterial strains isolated from the rhizosphere of Nicotiana glauca, and selected for their biochemical traits from a group of 175, to trigger the innate immune system of Arabidopsis thaliana seedlings against the pathogen Pseudomonas syringae pv. tomato DC3000. The five strains more effective in preventing pathogen infection were used to elucidate signal transduction pathways involved in the plant immune response by studying the differential expression of Salicylic acid and Jasmonic acid/Ethylene pathway marker genes. Some strains stimulated both pathways, while others stimulated either one or the other. The metabolic elicitors of two strains, chosen for the differential expression results of the genes studied, were extracted using n-hexane, ethyl acetate, and n-butanol, and their capacity to mimic bacterial effect to trigger the plant immune system was studied. N-hexane and ethyl acetate were the most effective fractions against the pathogen in both strains, achieving similar protection rates although gene expression responses were different from that obtained by the bacteria. These results open an amount of biotechnological possibilities to develop biological products for agriculture.

9.
PLoS One ; 15(5): e0232626, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32374762

RESUMO

The aim of this study is to determine the involvement of the flavonol-anthocyanin pathway on plant adaptation to biotic stress using the B.amyloliquefaciens QV15 to trigger blackberry metabolism and identify target genes to improve plant fitness and fruit quality. To achieve this goal, field-grown blackberries were root-inoculated with QV15 along its growth cycle. At fruiting, a transcriptomic analysis by RNA-Seq was performed on leaves and fruits of treated and non-treated field-grown blackberries after a sustained mildew outbreak; expression of the regulating and core genes of the Flavonol-Anthocyanin pathway were analysed by qPCR and metabolomic profiles by UHPLC/ESI-qTOF-MS; plant protection was found to be up to 88%. Overexpression of step-controlling genes in leaves and fruits, associated to lower concentration of flavonols and anthocyanins in QV15-treated plants, together with a higher protection suggest a phytoanticipin role for flavonols in blackberry; kempferol-3-O-rutinoside concentration was strikingly high. Overexpression of RuF3H (Flavonol-3-hidroxylase) suggests a pivotal role in the coordination of committing steps in this pathway, controlling carbon flux towards the different sinks. Furthermore, this C demand is supported by an activation of the photosynthetic machinery, and boosted by a coordinated control of ROS into a sub-lethal range, and associated to enhanced protection to biotic stress.


Assuntos
Adaptação Fisiológica , Antocianinas/metabolismo , Bacillus amyloliquefaciens/fisiologia , Sistema Enzimático do Citocromo P-450/fisiologia , Rubus/enzimologia , Rubus/microbiologia , Estresse Fisiológico , Sistema Enzimático do Citocromo P-450/genética , Frutas/enzimologia , Frutas/genética , Frutas/microbiologia , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Folhas de Planta/enzimologia , Folhas de Planta/microbiologia , Rubus/genética
10.
Foods ; 9(1)2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31935994

RESUMO

Global climate change has increased warming with a concomitant decrease in water availability and increased soil salinity, factors that compromise agronomic production. On the other hand, new agronomic developments using irrigation systems demand increasing amounts of water to achieve an increase in yields. Therefore, new challenges appear to improve plant fitness and yield, while limiting water supply for specific crops, particularly, olive trees. Plants have developed several innate mechanisms to overcome water shortage and the use of beneficial microorganisms to ameliorate symptoms appears as a challenging alternative. Our aim is to improve plant fitness with beneficial bacterial strains capable of triggering plant metabolism that targets several mechanisms simultaneously. Our secondary aim is to improve the content of molecules with bioactive effects to valorize pruning residues. To analyze bacterial effects on olive plantlets that are grown in saline soil, photosynthesis, photosynthetic pigments, osmolytes (proline and soluble sugars), and reactive oxygen species (ROS)-scavenging enzymes (superoxide dismutase-SOD and ascorbate peroxidase-APX) and molecules (phenols, flavonols, and oleuropein) were determined. We found photosynthetic pigments, antioxidant molecules, net photosynthesis, and water use efficiency to be the most affected parameters. Most strains decreased pigments and increased osmolytes and phenols, and only one strain increased the antihypertensive molecule oleuropein. All strains increased net photosynthesis, but only three increased water use efficiency. In conclusion, among the ten strains, three improved water use efficiency and one increased values of pruning residues.

11.
J Sci Food Agric ; 99(6): 2939-2946, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30471120

RESUMO

BACKGROUND: Raspberry and strawberry are high value-added food products that can contribute to human health due to the abundance of polyphenols that they contain. Polyphenols are secondary metabolites and therefore devoted to improve plant adaptation, these polyphenol profile can be induced applying different stimuli, such as certain bacteria. The aim of this study was twofold: (i) to evaluate the ability of two bacterial strains to modulate secondary metabolisms in strawberry and raspberry, and (ii) to explore the ability of plant extracts to modify enzyme activities related to metabolic syndrome. RESULTS: Total phenolic and anthocyanin content was higher in strawberries than in raspberries, despite similar antioxidant capacities. Strawberry extracts performed better on the tested enzymes, except on α-glucosidase inhibition capacity. Bacillus amyloliquefaciens stabilized the effects of extracts at different points in time, and Pseudomonas fluorescens modified plant metabolism after more inoculations (spring) in both species, improving the effects of raspberry extracts on α-glucosidase, COX1, and COX2, and of strawberry on α-amylase and COX1. CONCLUSION: It is good to include these two fruits in the diet because they improve the activity of metabolic syndrome-related enzymes. Applying either strain during plant growth modifies the bioactive profile of the plants, improving the effects of the fruit extracts on human health. © 2018 Society of Chemical Industry.


Assuntos
Fragaria/metabolismo , Frutas/microbiologia , Síndrome Metabólica/enzimologia , Extratos Vegetais/química , Rubus/metabolismo , Antocianinas/química , Antocianinas/metabolismo , Bacillus amyloliquefaciens/metabolismo , Ciclo-Oxigenase 1/química , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/química , Ciclo-Oxigenase 2/metabolismo , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Fragaria/microbiologia , Frutas/química , Frutas/metabolismo , Humanos , Síndrome Metabólica/dietoterapia , Fenóis/química , Fenóis/metabolismo , Extratos Vegetais/metabolismo , Pseudomonas fluorescens/metabolismo , Rubus/química , Rubus/microbiologia , alfa-Amilases/genética , alfa-Amilases/metabolismo , alfa-Glucosidases/química , alfa-Glucosidases/metabolismo
12.
Front Plant Sci ; 8: 472, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28428793

RESUMO

Blackberries (Rubus spp.) are among the high added value food products relevant for human health due to the increasing evidence of the beneficial effects of polyphenols, which are very abundant in these fruits. Interestingly, these compounds also play a role on plant physiology, being especially relevant their role in plant defense against biotic and abiotic stress. Hence, we hypothesize that since blackberry fruits have high amounts of flavonols and anthocyanins, leaves would also have high amounts of these compounds, and can be studied as a source of active molecules; furthermore, leaf synthesis would support their high contents in fruits. To explore this hypothesis, the present study reports a de novo transcriptome analysis on field grown blackberry leaves and fruits at the same time point, to establish the metabolic relationship of these compounds in both organs. Transcripts were aligned against Fragaria vesca genome, and genes were identified and annotated in different databases; tissue expression pattern showed 20,463 genes common to leaves and fruits, while 6,604 genes were significantly overexpressed only in fruits, while another 6,599 genes were significantly overexpressed in leaves, among which flavonol-anthocyanin transporter genes were present. Bioactives characterization indicated that total phenolics in leaves were three-fold, and flavonols were six-fold than in fruits, while concentration of anthocyanins was higher in fruits; HPLC-MS analysis indicated different composition in leaves and fruits, with cyanidin-3-glucoside as the only common compound identified. Next, RT-qPCR of the core genes in the flavonol anthocyanin pathway and regulatory MYB genes were carried out. Interestingly, genes in the flavonol-anthocyanin pathway and flavonol-transport families were overexpressed in leaves, consistent with the higher bioactive levels. On the other hand, transcription factors were overexpressed in fruits anticipating an active anthocyanin biosynthesis upon ripening. This suggests that, in addition to the biosynthesis taking place in the fruits during ripening, translocation of flavonols from leaves to fruits contributes to the high amounts of bioactives starting to accumulate in fruits.

13.
Plant Physiol Biochem ; 82: 9-16, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24869797

RESUMO

Glycine max (L.) Merr. plays a crucial role in both the field of food and the pharmaceutical industry due to their input as plant protein and to the benefits of isoflavones (IF) for health. In addition, IF play a key role in nodulation and plant defense and therefore, an increase in IF would be desirable for better field performance. IF are secondary metabolites and therefore, inducible, so finding effective agents to increase IF contents is interesting. Among these agents, plant growth promoting rhizobacteria (PGPR) have been used to trigger systemic induction of plant's secondary metabolism through their microbe associated molecular patterns (MAMPs) that fit in the plant's receptors to start a systemic response. The aim of this study was to evaluate the ability of 4 PGPR that had a contrasted effect on IF metabolism, to protect plants against biotic stress and to establish the relation between IF profile and the systemic response triggered by the bacteria. Apparently, the response involves a lower sensitivity to ethylene and despite the decrease in effective photosynthesis, growth is only compromised in the case of M84, the most effective in protection. All strains protected soybean against Xanthomonas axonopodis pv. glycines (M84 > N5.18 > Aur9>N21.4) and only M84 and N5.18 involved IF. N5.18 stimulated accumulation of IF before pathogen challenge. M84 caused a significant increase on IF only after pathogen challenge and N21.4 caused a significant increase on IF content irrespective of pathogen challenge. Aur9 did not affect IF. These results point out that all 4 strains have MAMPs that trigger defensive metabolism in soybean. Protection induced by N21.4 and Aur9 involves other metabolites different to IF and the role of IF in defence depends on the previous metabolic status of the plant and on the bacterial MAMP.


Assuntos
Glycine max/metabolismo , Glycine max/microbiologia , Isoflavonas/metabolismo , Rhizobium/metabolismo , Rhizobium/fisiologia , Xanthomonas axonopodis/patogenicidade , Regulação da Expressão Gênica de Plantas/fisiologia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia
14.
Plant Foods Hum Nutr ; 68(3): 299-305, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23918406

RESUMO

The effect of two bacterial strains to enhance bioactive contents (total phenolic compounds, total flavonoid compounds and isoflavones) and antioxidant activity on 3-day-old soybean sprouts were investigated. To identify bacterial determinants responsible for these effects, viable and UV-treated strains were delivered to wounded seeds at different concentration. Multivariate analysis performed with all the evaluated parameters indicated the different effectiveness of Stenotrophomonas maltophilia N5.18 and Pseudomonas fluorescens N21.4 based on different structural and metabolic determinants for each. N21.4 increased total phenolics and isoflavones from the genistein family, while N5.18 triggered biosynthesis of daidzein and genistein families coupled to a decrease in total phenolics, suggesting different molecular targets in the phenilpropanoid pathway. Only extracts from N5.18 treated seeds showed an improved antioxidant activity according to the ß-carotene bleaching prevention method. In summary, bioeffectors from both bacterial strains are effective tools to improve soybean sprouts quality; structural elicitors from N5.18 also enhanced antioxidant activity, being the best alternative for further development of a biotechnological procedure.


Assuntos
Glycine max/metabolismo , Isoflavonas/análise , Brotos de Planta/metabolismo , Pseudomonas fluorescens/fisiologia , Stenotrophomonas maltophilia/fisiologia , Antioxidantes/análise , Flavonoides/análise , Análise Multivariada , Fenóis/análise , Brotos de Planta/química , Pseudomonas fluorescens/efeitos da radiação , Sementes/química , Sementes/microbiologia , Sementes/fisiologia , Glycine max/química , Glycine max/crescimento & desenvolvimento , Stenotrophomonas maltophilia/efeitos da radiação , Raios Ultravioleta
15.
J Agric Food Chem ; 58(3): 1484-92, 2010 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-20073465

RESUMO

Nine plant growth-promoting rhizobacteria from different backgrounds were assayed on Glycine max var. Osumi to evaluate their potential as biotic elicitors to increase isoflavone (IF) levels. Strains were inoculated on 2 day old pregerminated seeds. Six days after inoculation, the seedlings were harvested. Biometric parameters were registered, and IFs were determined. Although only one strain (N21.4) increased total IF contents and only one (M84) caused significant decreases in total IF, five different behaviors were detected when the daidzein and genistein families were analyzed separately. All strains triggered IF metabolism so further studies have to be developed since the different beneficial effects of IF through the diet may be due to the different IF profiles. These are encouraging results from two points of view: (1) N21.4 increases IF in seedlings, and (2) all other beneficial strains trigger IF metabolism differentially; hence, both facts could be used to prepare food supplements or as enriched standardized foods after full development of the biotechnological procedure.


Assuntos
Fenômenos Fisiológicos Bacterianos , Glycine max/crescimento & desenvolvimento , Glycine max/metabolismo , Isoflavonas/metabolismo , Microbiologia do Solo , Bactérias/isolamento & purificação , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Glycine max/microbiologia , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...