Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 11(1): 3531, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32669601

RESUMO

Homologous recombination (HR) factors were recently implicated in DNA replication fork remodeling and protection. While maintaining genome stability, HR-mediated fork remodeling promotes cancer chemoresistance, by as-yet elusive mechanisms. Five HR cofactors - the RAD51 paralogs RAD51B, RAD51C, RAD51D, XRCC2 and XRCC3 - recently emerged as crucial tumor suppressors. Albeit extensively characterized in DNA repair, their role in replication has not been addressed systematically. Here, we identify all RAD51 paralogs while screening for modulators of RAD51 recombinase upon replication stress. Single-molecule analysis of fork progression and architecture in isogenic cellular systems shows that the BCDX2 subcomplex restrains fork progression upon stress, promoting fork reversal. Accordingly, BCDX2 primes unscheduled degradation of reversed forks in BRCA2-defective cells, boosting genomic instability. Conversely, the CX3 subcomplex is dispensable for fork reversal, but mediates efficient restart of reversed forks. We propose that RAD51 paralogs sequentially orchestrate clinically relevant transactions at replication forks, cooperatively promoting fork remodeling and restart.


Assuntos
Replicação do DNA , Rad51 Recombinase/metabolismo , Proteína BRCA2/metabolismo , Linhagem Celular Tumoral , Estruturas Cromossômicas/metabolismo , Cromossomos/ultraestrutura , Dano ao DNA , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Instabilidade Genômica , Recombinação Homóloga , Humanos , Microscopia , Mutagênicos , Mutação , Osteossarcoma/metabolismo , RNA Interferente Pequeno/metabolismo
2.
PLoS Genet ; 15(10): e1008355, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31584931

RESUMO

Deficiency in several of the classical human RAD51 paralogs [RAD51B, RAD51C, RAD51D, XRCC2 and XRCC3] is associated with cancer predisposition and Fanconi anemia. To investigate their functions, isogenic disruption mutants for each were generated in non-transformed MCF10A mammary epithelial cells and in transformed U2OS and HEK293 cells. In U2OS and HEK293 cells, viable ablated clones were readily isolated for each RAD51 paralog; in contrast, with the exception of RAD51B, RAD51 paralogs are cell-essential in MCF10A cells. Underlining their importance for genomic stability, mutant cell lines display variable growth defects, impaired sister chromatid recombination, reduced levels of stable RAD51 nuclear foci, and hyper-sensitivity to mitomycin C and olaparib, with the weakest phenotypes observed in RAD51B-deficient cells. Altogether these observations underscore the contributions of RAD51 paralogs in diverse DNA repair processes, and demonstrate essential differences in different cell types. Finally, this study will provide useful reagents to analyze patient-derived mutations and to investigate mechanisms of chemotherapeutic resistance deployed by cancers.


Assuntos
Reparo do DNA/genética , Proteínas de Ligação a DNA/genética , Recombinação Homóloga/genética , Rad51 Recombinase/genética , Núcleo Celular/genética , Cromátides/genética , Dano ao DNA/genética , Genoma Humano/genética , Células HEK293 , Humanos , Mutação
3.
DNA Repair (Amst) ; 76: 99-107, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30836272

RESUMO

The proficiency of cancer cells to repair DNA double-strand breaks (DSBs) by homologous recombination (HR) is a key determinant in predicting response to targeted therapies such as PARP inhibitors. The RAD51 paralogs work as multimeric complexes and act downstream of BRCA1 to facilitate HR. Numerous epidemiological studies have linked RAD51 paralog mutations with hereditary cancer predisposition. Despite their substantial links to cancer, RAD51 paralog HR function has remained elusive. Here we identify isoform 1 as the functional isoform of RAD51D, whereas isoform 4 which has a large N-terminal deletion (including the Walker A motif), and isoform 6 which includes an alternate exon in the N-terminus, are non-functional. To determine the importance of this N-terminal region, we investigated the impact of cancer-associated mutations and SNPs in this variable RAD51D N-terminal region using yeast-2-hybrid and yeast-3-hybrid assays to screen for altered protein-protein interactions. We identified two cancer-associated mutations close to or within the Walker A motif (G96C and G107 V, respectively) that independently disrupt RAD51D interaction with XRCC2. We validated our yeast interaction data in human U2OS cells by co-immunoprecipitation and determined the impact of these mutations on HR-proficiency using a sister chromatid recombination reporter assay in a RAD51D knock-out cell line. Our investigation reveals that the interaction of RAD51D with XRCC2 is required for DSB repair. By characterizing the impact of cancer-associated mutations on RAD51D interactions, we aim to develop predictive models for therapeutic sensitivity and resistance in patients who harbor similar mutations in RAD51D.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Recombinação Homóloga , Mutação , Linhagem Celular Tumoral , Humanos , Ligação Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Processamento de Proteína Pós-Traducional
4.
Cell Rep ; 24(3): 538-545, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-30021152

RESUMO

RAD51 promotes homologous recombination repair (HR) of double-strand breaks and acts during DNA replication to facilitate fork reversal and protect nascent DNA strands from nuclease digestion. Several additional HR proteins regulate fork protection by promoting RAD51 filament formation. Here, we show that RADX modulates stalled fork protection by antagonizing RAD51. Consequently, silencing RADX restores fork protection in cells deficient for BRCA1, BRCA2, FANCA, FANCD2, or BOD1L. Inactivating RADX prevents both MRE11- and DNA2-dependent fork degradation. Furthermore, RADX overexpression causes fork degradation that is dependent on these nucleases and fork reversal. The amount of RAD51 determines the fate of stalled replication forks, with more RAD51 required for fork protection than fork reversal. Finally, we find that RADX effectively competes with RAD51 for binding to single-stranded DNA, supporting a model in which RADX buffers RAD51 to ensure the right amount of reversal and protection to maintain genome stability.


Assuntos
Replicação do DNA , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a RNA/metabolismo , Rad51 Recombinase/metabolismo , Proteína BRCA1/metabolismo , Linhagem Celular , DNA/metabolismo , Replicação do DNA/efeitos dos fármacos , Proteínas de Ligação a DNA/genética , Inativação Gênica/efeitos dos fármacos , Humanos , Proteína Homóloga a MRE11/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Estabilidade Proteica/efeitos dos fármacos , Proteínas de Ligação a RNA/genética
5.
EMBO J ; 37(7)2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29507080

RESUMO

An essential mechanism for repairing DNA double-strand breaks is homologous recombination (HR). One of its core catalysts is human RAD51 (hRAD51), which assembles as a helical nucleoprotein filament on single-stranded DNA, promoting DNA-strand exchange. Here, we study the interaction of hRAD51 with single-stranded DNA using a single-molecule approach. We show that ATP-bound hRAD51 filaments can exist in two different states with different contour lengths and with a free-energy difference of ~4 kBT per hRAD51 monomer. Upon ATP hydrolysis, the filaments convert into a disassembly-competent ADP-bound configuration. In agreement with the single-molecule analysis, we demonstrate the presence of two distinct protomer interfaces in the crystal structure of a hRAD51-ATP filament, providing a structural basis for the two conformational states of the filament. Together, our findings provide evidence that hRAD51-ATP filaments can exist in two interconvertible conformational states, which might be functionally relevant for DNA homology recognition and strand exchange.


Assuntos
Trifosfato de Adenosina/metabolismo , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/metabolismo , Recombinação Homóloga/fisiologia , Rad51 Recombinase/metabolismo , Trifosfato de Adenosina/química , Cristalografia por Raios X , DNA/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA/fisiologia , Replicação do DNA/fisiologia , DNA de Cadeia Simples/química , Modelos Moleculares , Conformação Molecular , Nucleoproteínas/metabolismo , Rad51 Recombinase/química
6.
Langmuir ; 32(33): 8403-12, 2016 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-27479732

RESUMO

RAD51 is the key component of the homologous recombination pathway in eukaryotic cells and performs its task by forming filaments on DNA. In this study we investigate the physical properties of RAD51 filaments formed on DNA using nanofluidic channels and fluorescence microscopy. Contrary to the bacterial ortholog RecA, RAD51 forms inhomogeneous filaments on long DNA in vitro, consisting of several protein patches. We demonstrate that a permanent "kink" in the filament is formed where two patches meet if the stretch of naked DNA between the patches is short. The kinks are readily seen in the present microscopy approach but would be hard to identify using conventional single DNA molecule techniques where the DNA is more stretched. We also demonstrate that protein patches separated by longer stretches of bare DNA roll up on each other and this is visualized as transiently overlapping filaments. RAD51 filaments can be formed at several different conditions, varying the cation (Mg(2+) or Ca(2+)), the DNA substrate (single-stranded or double-stranded), and the RAD51 concentration during filament nucleation, and we compare the properties of the different filaments formed. The results provide important information regarding the physical properties of RAD51 filaments but also demonstrate that nanofluidic channels are perfectly suited to study protein-DNA complexes.

7.
Proc Natl Acad Sci U S A ; 111(42): 15090-5, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25288749

RESUMO

During recombinational repair of double-stranded DNA breaks, RAD51 recombinase assembles as a nucleoprotein filament around single-stranded DNA to form a catalytically proficient structure able to promote homology recognition and strand exchange. Mediators and accessory factors guide the action and control the dynamics of RAD51 filaments. Elucidation of these control mechanisms necessitates development of approaches to quantitatively probe transient aspects of RAD51 filament dynamics. Here, we combine fluorescence microscopy, optical tweezers, and microfluidics to visualize the assembly of RAD51 filaments on bare single-stranded DNA and quantify the process with single-monomer sensitivity. We show that filaments are seeded from RAD51 nuclei that are heterogeneous in size. This heterogeneity appears to arise from the energetic balance between RAD51 self-assembly in solution and the size-dependent interaction time of the nuclei with DNA. We show that nucleation intrinsically is substrate selective, strongly favoring filament formation on bare single-stranded DNA. Furthermore, we devised a single-molecule fluorescence recovery after photobleaching assay to independently observe filament nucleation and growth, permitting direct measurement of their contributions to filament formation. Our findings yield a comprehensive, quantitative understanding of RAD51 filament formation on bare single-stranded DNA that will serve as a basis to elucidate how mediators help RAD51 filament assembly and accessory factors control filament dynamics.


Assuntos
DNA de Cadeia Simples/química , Rad51 Recombinase/química , Núcleo Celular/metabolismo , Corantes Fluorescentes/química , Humanos , Funções Verossimilhança , Microfluídica , Microscopia de Fluorescência , Pinças Ópticas , RNA Interferente Pequeno/metabolismo , Recombinação Genética , Reprodutibilidade dos Testes , Processos Estocásticos , Especificidade por Substrato
8.
Biomol NMR Assign ; 8(2): 247-50, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23771858

RESUMO

The gram-negative organism Pseudomonas aeruginosa is an opportunistic human pathogen and a leading cause of hospital-acquired infections. In P. aeruginosa PAO1, three cytoplasmic thioredoxins have been identified. An unusual thioredoxin (Patrx2) (108 amino acids) encoded by the PA2694 gene, is identified as a new thioredoxin-like protein based on sequence homology. Thioredoxin is a ubiquitous protein, which serves as a general protein disulfide oxidoreductase. Patrx2 present an atypical active site CGHC. We report the nearly complete (1)H, (13)C and (15)N resonance assignments of reduced Patrx2. 2D and 3D heteronuclear NMR experiments were performed with uniformly (15)N-, (13)C-labelled Patrx2, resulting in 97.2% backbone and 92.5% side-chain (1)H, (13)C and (15)N resonance assignments for the reduced form. (BMRB deposits with accession number 18130).


Assuntos
Proteínas de Bactérias/química , Ressonância Magnética Nuclear Biomolecular , Pseudomonas aeruginosa , Tiorredoxinas/química , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Clonagem Molecular , Dados de Sequência Molecular , Pseudomonas aeruginosa/genética , Tiorredoxinas/genética
9.
J Biol Chem ; 287(3): 1688-97, 2012 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-22128175

RESUMO

Cytoplasmic desulfothioredoxin (Dtrx) from the anaerobe Desulfovibrio vulgaris Hildenborough has been identified as a new member of the thiol disulfide oxidoreductase family. The active site of Dtrx contains a particular consensus sequence, CPHC, never seen in the cytoplasmic thioredoxins and generally found in periplasmic oxidases. Unlike canonical thioredoxins (Trx), Dtrx does not present any disulfide reductase activity, but it presents instead an unusual disulfide isomerase activity. We have used NMR spectroscopy to gain insights into the structure and the catalytic mechanism of this unusual Dtrx. The redox potential of Dtrx (-181 mV) is significantly less reducing than that of canonical Trx. A pH dependence study allowed the determination of the pK(a) of all protonable residues, including the cysteine and histidine residues. Thus, the pK(a) values for the thiol group of Cys(31) and Cys(34) are 4.8 and 11.3, respectively. The His(33) pK(a) value, experimentally determined for the first time, differs notably as a function of the redox states, 7.2 for the reduced state and 4.6 for the oxidized state. These data suggest an important role for His(33) in the molecular mechanism of Dtrx catalysis that is confirmed by the properties of mutant DtrxH33G protein. The NMR structure of Dtrx shows a different charge repartition compared with canonical Trx. The results presented are likely indicative of the involvement of this protein in the catalysis of substrates specific of the anaerobe cytoplasm of DvH. The study of Dtrx is an important step toward revealing the molecular details of the thiol-disulfide oxidoreductase catalytic mechanism.


Assuntos
Proteínas de Bactérias/química , Desulfovibrio/enzimologia , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/química , Isomerases de Dissulfetos de Proteínas/química , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Catálise , Desulfovibrio/genética , Mutação de Sentido Incorreto , Ressonância Magnética Nuclear Biomolecular , Oxirredução , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , Isomerases de Dissulfetos de Proteínas/genética , Estrutura Terciária de Proteína , Relação Estrutura-Atividade
10.
Biomol NMR Assign ; 5(2): 177-9, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21287302

RESUMO

Thioredoxins are ubiquitous key antioxidant enzymes which play an essential role in cell defense against oxidative stress. They maintain the redox homeostasis owing to the regulation of thiol-disulfide exchange. In the present paper, we report the full resonance assignments of (1)H, (13)C and (15)N atoms for the reduced and oxidized forms of Desulfovibrio vulgaris Hildenborough thioredoxin 1 (Trx1). 2D and 3D heteronuclear NMR experiments were performed using uniformly (15)N-, (13)C-labelled Trx1. Chemical shifts of 97% of the backbone and 90% of the side chain atoms were obtained for the oxidized and reduced form (BMRB deposits with accession number 17299 and 17300, respectively).


Assuntos
Proteínas de Bactérias/química , Desulfovibrio vulgaris/química , Ressonância Magnética Nuclear Biomolecular , Tiorredoxinas/química , Isótopos/química , Oxirredução , Proteínas Recombinantes/química
11.
J Biol Chem ; 286(10): 7812-7821, 2011 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-21199874

RESUMO

Sulfate reducers have developed a multifaceted adaptative strategy to survive against oxidative stresses. Along with this oxidative stress response, we recently characterized an elegant reversible disulfide bond-dependent protective mechanism in the pyruvate:ferredoxin oxidoreductase (PFOR) of various Desulfovibrio species. Here, we searched for thiol redox systems involved in this mechanism. Using thiol fluorescent labeling, we show that glutathione is not the major thiol/disulfide balance-controlling compound in four different Desulfovibrio species and that no other plentiful low molecular weight thiol can be detected. Enzymatic analyses of two thioredoxins (Trxs) and three thioredoxin reductases allow us to propose the existence of two independent Trx systems in Desulfovibrio vulgaris Hildenborough (DvH). The TR1/Trx1 system corresponds to the typical bacterial Trx system. We measured a TR1 apparent K(m) value for Trx1 of 8.9 µM. Moreover, our results showed that activity of TR1 was NADPH-dependent. The second system named TR3/Trx3 corresponds to an unconventional Trx system as TR3 used preferentially NADH (K(m) for NADPH, 743 µM; K(m) for NADH, 5.6 µM), and Trx3 was unable to reduce insulin. The K(m) value of TR3 for Trx3 was 1.12 µM. In vitro experiments demonstrated that the TR1/Trx1 system was the only one able to reactivate the oxygen-protected form of Desulfovibrio africanus PFOR. Moreover, ex vivo pulldown assays using the mutant Trx1(C33S) as bait allowed us to capture PFOR from the DvH extract. Altogether, these data demonstrate that PFOR is a new target for Trx1, which is probably involved in the protective switch mechanism of the enzyme.


Assuntos
Proteínas de Bactérias/metabolismo , Desulfovibrio vulgaris/metabolismo , Piruvato Sintase/metabolismo , Tiorredoxinas/metabolismo , Anaerobiose/fisiologia , Proteínas de Bactérias/genética , Desulfovibrio vulgaris/genética , Dissulfetos/metabolismo , Mutação , NAD/genética , NAD/metabolismo , Oxirredução , Piruvato Sintase/genética , Espécies Reativas de Oxigênio/metabolismo , Compostos de Sulfidrila/metabolismo , Tiorredoxinas/genética
12.
Biomol NMR Assign ; 4(2): 135-7, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20390383

RESUMO

Based on sequence homology, desulfothioredoxin (DTrx) from Desulfovibrio vulgaris Hildenborough has been identified as a new member of the thioredoxin superfamily. Desulfothioredoxin (104 amino acids) contains a particular active site consensus sequence, CPHC probably correlated to the anaerobic metabolism of these bacteria. We report the full 1H, 13C and 15N resonance assignments of the reduced and the oxidized form of desulfothioredoxin (DTrx). 2D and 3D heteronuclear NMR experiments were performed using uniformly 15N-, 13C-labelled DTrx. More than 98% backbone and 96% side-chain 1H, 13C and 15N resonance assignments were obtained. (BMRB deposits with accession number 16712 and 16713).


Assuntos
Desulfovibrio vulgaris/química , Ressonância Magnética Nuclear Biomolecular , Tiorredoxinas/química , Isótopos de Carbono , Hidrogênio , Isótopos de Nitrogênio , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...