Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(5)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36901942

RESUMO

Conformational flexibility plays an essential role in antibodies' functional and structural stability. They facilitate and determine the strength of antigen-antibody interactions. Camelidae express an interesting subtype of single-chain antibody, named Heavy Chain only Antibody. They have only one N-terminal Variable domain (VHH) per chain, composed of Frameworks (FRs) and Complementarity Determining regions (CDRs) like their VH and VL counterparts in IgG. Even when expressed independently, VHH domains display excellent solubility and (thermo)stability, which helps them to retain their impressive interaction capabilities. Sequence and structural features of VHH domains contributing to these abilities have already been studied compared to classical antibodies. To have the broadest view and understand the changes in dynamics of these macromolecules, large-scale molecular dynamics simulations for a large number of non-redundant VHH structures have been performed for the first time. This analysis reveals the most prevalent movements in these domains. It reveals the four main classes of VHHs dynamics. Diverse local changes were observed in CDRs with various intensities. Similarly, different types of constraints were observed in CDRs, while FRs close to CDRs were sometimes primarily impacted. This study sheds light on the changes in flexibility in different regions of VHH that may impact their in silico design.


Assuntos
Camelidae , Região Variável de Imunoglobulina , Animais , Região Variável de Imunoglobulina/química , Regiões Determinantes de Complementaridade/química , Cadeias Pesadas de Imunoglobulinas/química , Simulação de Dinâmica Molecular
2.
J Biomol Struct Dyn ; 41(22): 13287-13301, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36752327

RESUMO

Heavy Chain Only Antibodies are specific to Camelid species. Despite the lack of the light chain variable domain, their heavy chain variable domain (VH) domain, named VHH or nanobody, has promising potential applications in research and therapeutic fields. The structural study of VHH is therefore of great interest. Unfortunately, considering the huge amount of sequences that might be produced, only about one thousand of VHH experimental structures are publicly available in the Protein Data Bank, implying that structural model prediction of VHH is a necessary alternative to obtaining 3D information besides its sequence. The present study aims to assess and compare the quality of predictions from different modelling methodologies. Established comparative & homology modelling approaches to recent Deep Learning-based modelling strategies were applied, i.e. Modeller using single or multiple structural templates, ModWeb, SwissModel (with two evaluation schema), RoseTTAfold, AlphaFold 2 and NanoNet. The prediction accuracy was evaluated using RMSD, TM-score, GDT-TS, GDT-HA and Protein Blocks distance metrics. Besides the global structure assessment, we performed specific analyses of Frameworks and CDRs structures. We observed that AlphaFold 2 and especially NanoNet performed better than the other evaluated softwares. Importantly, we performed molecular dynamics simulations of an experimental structure and a NanoNet predicted model of a VHH in order to compare the global structural flexibility and local conformations using Protein Blocks. Despite rather similar structures, substantial differences in dynamical properties were observed, which underlies the complexity of the task of model evaluation.Communicated by Ramaswamy H. Sarma.


Assuntos
Cadeias Pesadas de Imunoglobulinas , Região Variável de Imunoglobulina , Região Variável de Imunoglobulina/química , Cadeias Pesadas de Imunoglobulinas/química
3.
Int J Mol Sci ; 23(7)2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35409081

RESUMO

VHH, i.e., VH domains of camelid single-chain antibodies, are very promising therapeutic agents due to their significant physicochemical advantages compared to classical mammalian antibodies. The number of experimentally solved VHH structures has significantly improved recently, which is of great help, because it offers the ability to directly work on 3D structures to humanise or improve them. Unfortunately, most VHHs do not have 3D structures. Thus, it is essential to find alternative ways to get structural information. The methods of structure prediction from the primary amino acid sequence appear essential to bypass this limitation. This review presents the most extensive overview of structure prediction methods applied for the 3D modelling of a given VHH sequence (a total of 21). Besides the historical overview, it aims at showing how model software programs have been shaping the structural predictions of VHHs. A brief explanation of each methodology is supplied, and pertinent examples of their usage are provided. Finally, we present a structure prediction case study of a recently solved VHH structure. According to some recent studies and the present analysis, AlphaFold 2 and NanoNet appear to be the best tools to predict a structural model of VHH from its sequence.


Assuntos
Camelídeos Americanos , Cadeias Pesadas de Imunoglobulinas , Sequência de Aminoácidos , Animais , Anticorpos , Cadeias Pesadas de Imunoglobulinas/química , Modelos Estruturais
4.
Eur J Med Chem ; 158: 405-413, 2018 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-30237123

RESUMO

Phosphatidylinositide 3-kinases (PI3Ks) are widely expressed enzymes involved in membrane signalization pathways. Attempts to administer inhibitors with broad activity against different isoforms have failed due to toxicity. Conversely the PI3Kδ isoform is much more selectively expressed, enabling therapeutic targeting of this isoform. Of particular interest PI3Kδ is expressed in human basophils and its inhibition has been shown to reduce anti-IgE induced basophil degranulation, suggesting that PI3Kδ inhibitors could be useful as anti-allergy drugs. Herein, we report for the first time the activity of compounds derived from chalcone scaffolds as inhibitors of normal human basophil degranulation and identified the most active compound with anti-PI3Kδ properties that was investigated in preclinical models. Compound 18, namely 1-[2-hydroxy-4,6-dimethoxy-3-(N-methylpiperidin-4-yl)phenyl]-3-(2,4,6-trimethoxyphenyl)-prop-2-en-1-one, was found to inhibit normal human basophil degranulation in a dose-dependent manner. In a murine model of ovalbumin-induced asthma, compound 18 was shown to reduce expiratory pressure while its impact on the inflammatory infiltrate in alveolar lavage and total lung was dependent on the route of administration. In a DNFB-induced model of atopic dermatitis compound 18 administered systemically proved to be as potent as topical betamethasone. These results support the anti-atopic and allergic properties of the title compound and warrant further clinical development.


Assuntos
Basófilos/efeitos dos fármacos , Chalconas/química , Chalconas/farmacologia , Dermatite Atópica/tratamento farmacológico , Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Animais , Asma/tratamento farmacológico , Asma/metabolismo , Basófilos/fisiologia , Degranulação Celular/efeitos dos fármacos , Chalconas/uso terapêutico , Dermatite Atópica/metabolismo , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Humanos , Camundongos , Modelos Moleculares , Fosfatidilinositol 3-Quinases/metabolismo , Piperidinas/química , Piperidinas/farmacologia , Piperidinas/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêutico
5.
Curr Comput Aided Drug Des ; 14(3): 253-268, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-27439722

RESUMO

BACKGROUND: Drepanocytosis is a genetic blood disorder characterized by red blood cells that assume an abnormal, rigid, sickle shape. In the pathogenesis of vaso-occlusive crises of sickle cell disease, red blood cells bind to the endothelium and promote vaso-occlusion. At the surface of these sickle red blood cells, the overexpressed protein Lutheran strongly interacts with the Laminin 511/521. The aim of this study is to identify a PPI inhibitor with a high probability of binding to Lutheran for the inhibition of the Lutheran-Laminin 511/521 interaction. METHODS: A virtual screening was performed with 395 601 compounds that target Lutheran. Prior validation of a robust docking and scoring protocol was considered on the protein CD80 because this protein has a binding site with similar topological and physico-chemical characteristics and it also has a series of ligands with known affinity constants. This protocol consisted of multiple filtering steps based on docked scores, molecular dynamics simulations, post-screening scores, and molecular properties. RESULTS: A robust docking and scoring protocol was validated on the protein CD80 with the docking program DOCK6 and the secondary scoring function XSCORE. We identified four molecules for Lutheran that have good structural and physico-chemical properties. CONCLUSION: We took advantage of the similarities between the binding site of Lutheran and that of the protein CD80 to set up a robust docking and scoring protocol. Our protocol for primary scoring filtering, molecular dynamics simulation filtering, secondary scoring filtering, and molecular property filtering allows discarding most of the ligands with four compounds that are promising candidates for inhibiting the Lutheran-Laminin 511/521 interaction.


Assuntos
Moléculas de Adesão Celular/metabolismo , Descoberta de Drogas , Laminina/metabolismo , Sistema do Grupo Sanguíneo Lutheran/metabolismo , Mapas de Interação de Proteínas/efeitos dos fármacos , Moléculas de Adesão Celular/antagonistas & inibidores , Desenho Assistido por Computador , Descoberta de Drogas/métodos , Humanos , Laminina/antagonistas & inibidores , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia
6.
PLoS One ; 9(12): e114610, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25502559

RESUMO

With a view to explaining the structure-affinity properties of the ligands of the protein FKBP12, we characterized a binding intermediate state between this protein and a high-affinity ligand. Indeed, the nature and extent of the intermolecular contacts developed in such a species may play a role on its stability and, hence, on the overall association rate. To find the binding intermediate, a molecular simulation protocol was used to unbind the ligand by gradually decreasing the biasing forces introduced. The intermediate was subsequently refined with 17 independent stochastic boundary molecular dynamics simulations that provide a consistent picture of the intermediate state. In this state, the core region of the ligand remains stable, notably because of the two anchoring oxygen atoms that correspond to recurrent motifs found in all FKBP12 ligand core structures. Besides, the non-core regions participate in numerous transient intermolecular and intramolecular contacts. The dynamic aspect of most of the contacts seems important both for the ligand to retain at least a part of its configurational entropy and for avoiding a trapped state along the binding pathway. Since the transient and anchoring contacts contribute to increasing the stability of the intermediate, as a corollary, the dissociation rate constant [Formula: see text] of this intermediate should be decreased, resulting in an increase of the affinity constant [Formula: see text]. The present results support our previous conclusions and provide a coherent rationale for explaining the prevalence in high-affinity ligands of (i) the two oxygen atoms found in carbonyl or sulfonyl groups of dissimilar core structures and of (ii) symmetric or pseudo-symmetric mobile groups of atoms found as non-core moieties. Another interesting aspect of the intermediate is the distortion of the flexible 80 s loop of the protein, mainly in its tip region, that promotes the accessibility to the bound state.


Assuntos
Simulação de Dinâmica Molecular , Proteína 1A de Ligação a Tacrolimo/metabolismo , Sítios de Ligação , Ligantes , Ligação Proteica , Estrutura Secundária de Proteína , Relação Estrutura-Atividade , Proteína 1A de Ligação a Tacrolimo/química
7.
J Mol Graph Model ; 49: 118-28, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24657432

RESUMO

FKBP12 is an important target in the treatment of transplant rejection and is also a promising target for cancer and neurodegenerative diseases. We determined for two ligands of nanomolar affinity the set of parameters in the CHARMM force field. The fitting procedure was based on reproducing the quantum chemistry data (distances, angles, and energies). Since the dynamical behavior of such ligands strongly depends on the dihedral angles, care was taken to derive the corresponding parameters. Moreover, since each of the central core region of these two ligands is similar to other known ligands or drugs of other proteins, part at least of these parameters could also be useful for these other ligands.


Assuntos
Proteína 1A de Ligação a Tacrolimo/química , Algoritmos , Modelos Moleculares , Proteína 1A de Ligação a Tacrolimo/metabolismo
8.
J Chem Theory Comput ; 7(3): 725-41, 2011 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-26596305

RESUMO

We characterized a binding intermediate between the protein FKBP12 and one of its high-affinity ligands by means of molecular dynamics simulations. In such an intermediate, which is expected to form at the end-point of the bimolecular diffusional search, short-range interactions between the molecular partners may play a role in the specificity of recognition as well as in the association rate. Langevin dynamics simulations were carried out to generate the intermediate by applying an external biasing force to unbind the ligand from the protein. The intermediate was then refined by seven independent molecular dynamics simulations performed with an explicit solvent model. We found consistent results both for the structure of the protein and for the position of the ligand in the intermediate. The two carbonyl oxygens O2 and O3 of the ligand core region act as two main anchors, making permanent contacts in the intermediate. The transient contacts with the protein are made by the ligand noncore moieties whose structures and mobilities enable many alternative contacts of different types to be formed: π-π molecular overlap and weak hydrogen bonds NH···π, CH···π, and CH···O. Hence, the stability of the ligand at the entrance of the protein binding pocket offers the possibility of fine-tuning a variety of short-range contacts that involve the ligand noncore moieties. Under the hypothesis that the stability of this intermediate is related to the affinity of the ligand, this binding intermediate model comes closest to explaining the role played by the noncore moieties in the affinity of this ligand. Moreover, this model also provides a plausible explanation for how structurally diverse core motifs that all share the carbonyl atoms O2 and O3 bind to FKBP12.

9.
J Am Chem Soc ; 128(17): 5923-9, 2006 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-16637660

RESUMO

The synthesis, characterization, and self-assembly in butanol of a series of well-defined alpha,alpha'-linked quinqui-, sexi-, and septithiophenes substituted, via ester links at their termini, by chiral oligo(ethylene oxide) chains carrying an alpha, beta, delta, and epsilon methyl, respectively, are reported. Studies of the self-assembly of these molecules using UV/visible absorption, luminescence, and circular dichroism spectroscopies reveal, for the sexithiophene case, that the magnitude of the observed Cotton effect in the aggregates diminishes progressively as the chiral substituent is moved away from the thiophene segment. The stability of the assemblies increases with the length of the oligothiophene and as the substituent chiral unit is moved away from the aromatic core, being greatest for the unsubstituted case. The sign of the Cotton effect alternates in an "odd/even" manner as the position of the chiral substituent is moved along the oligo(ethylene oxide) chain and on going from the quinquethiophene to the septithiophene having the same side chain. Atomic force microscopy on materials deposited from solution on an aluminum or glass surface and optical measurements show that capsules are formed from the oligothiophenes with H-type packing of the aromatic segments.

10.
J Mol Graph Model ; 25(2): 186-95, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16427344

RESUMO

The chloroplast protein CP12 is known to play a leading role in a complex formation with the enzymes GAPDH and PRK. As a preliminary step towards the understanding of the complex formation mechanism and the exact role of this protein linker, a comparative modelling of the CP12 protein of the green alga Chlamydomonas reinhardtii was performed. Because of the very few structural information and poor template similarities, the derivation of the model consisted in an iterative trial-and-error procedure using the comparative modelling program MODELLER, the following three structure validation programs PROCHECK, PROSA, and WHATIF, and molecular mechanics energy refinement of the model using the program CHARMM. The analysis of the final model reveals a scaffold of key residues that is believed to be essential in the folding mechanism and that coincides with the residues conserved throughout the CP12 family. Our results suggest that this protein is a typical disordered protein. Finally, the various mechanisms by which the CP12 protein can self-interact or binds to other enzymes are discussed in light of its modelled structure and characteristics.


Assuntos
Proteínas de Algas/química , Chlamydomonas reinhardtii/metabolismo , Proteínas de Algas/genética , Proteínas de Algas/metabolismo , Sequência de Aminoácidos , Animais , Chlamydomonas reinhardtii/genética , Cloroplastos/metabolismo , Simulação por Computador , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Conformação Proteica , Estrutura Secundária de Proteína , Homologia de Sequência de Aminoácidos
11.
J Phys Chem B ; 109(25): 12287-96, 2005 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-16852516

RESUMO

Intercalated and exfoliated models of polymer nanocomposites based on poly(epsilon-caprolactone) and functionalized montmorillonite clay are studied by means of molecular dynamics simulations. Intercalated and exfoliated models are considered for probing the structural characteristics of the corresponding nanocomposites prepared by melt intercalation and in situ polymerization, respectively. In the exfoliated system, the organization of the polymer chains onto the clay surface is examined in terms of the density profiles and the order parameter function. A layered structure can clearly be seen to form near the surface with density maxima higher than in amorphous poly(epsilon-caprolactone). This can be viewed as an increase in effective particle thickness, which can contribute to the outstanding gas barrier properties of the exfoliated nanocomposites. The comparison of the structures and energetics of the intercalated model with those of a nanocomposite model based on a nonfunctionalized clay indicates nearly similar characteristics. Nevertheless, the slight differences observed for the interfacial polymer density and clay- and surfactant-polymer binding energies can account for the differences in rheological measurements. The results also suggest that the difference in morphology obtained for the nanocomposites prepared by the two synthetic approaches can be ascribed to both a difference in interfacial polymer density and the formation of bridging polymer chain structures that hinder the exfoliation process.

12.
J Phys Chem B ; 109(43): 20315-23, 2005 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-16853628

RESUMO

A joint theoretical and experimental study of the electronic and structural properties of liquid crystalline metal-free phthalocyanines bearing a strong potential for charge and exciton transport has been performed. The synthesis of such compounds has been triggered by quantum chemical calculations showing that: (i) hole transport is favored in metal-free phthalocyanines by their extremely low reorganization energy (0.045 eV) and large electronic splittings; and (ii) the efficiency of energy transfer along the one-dimensional discotic stacks is weakly affected by rotational disorder due to the two-dimensional character of the molecules. We have synthesized two metal-free phthalocyanines with different branched aliphatic chains on the gram scale to allow for a full characterization of their solid-state properties. The two compounds self-organize in liquid crystalline mesophases, as evidenced by optical microscopy, differential scanning calorimetry, X-ray powder diffraction, and molecular dynamics simulations. They exhibit a columnar rectangular mesophase at room temperature and a columnar hexagonal mesophase at elevated temperature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...