Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Genet Genomic Med ; 11(12): e2256, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37592902

RESUMO

BACKGROUND: Very long-chain fatty acids (VLCFAs) composed of more than 20 carbon atoms are essential in the biosynthesis of cell membranes in the brain, skin, and retina. VLCFAs are elongated beyond 28 carbon atoms by ELOVL4 enzyme. Variants in ELOVL4 are associated with three Mendelian disorders: autosomal dominant (AD) Stargardt-like macular dystrophy type 3, AD spinocerebellar ataxia, and autosomal recessive disorder congenital ichthyosis, spastic quadriplegia and impaired intellectual development (ISQMR). Only seven subjects from five unrelated families with ISQMR have been described, all of which have biallelic single-nucleotide variants. METHODS: We performed clinical exome sequencing on probands from four unrelated families with neuro-ichthyosis. RESULTS: We identified three novel homozygous ELOVL4 variants. Two of the families originated from the same Saudi tribe and had the exact homozygous exonic deletion in ELOVL4, while the third and fourth probands had two different novel homozygous missense variants. Seven out of the eight affected subjects had profound developmental delay, epilepsy, axial hypotonia, peripheral hypertonia, and ichthyosis. Delayed myelination and corpus callosum hypoplasia were seen in two of five subjects with brain magnetic rosonance imaging and cerebral atrophy in three. CONCLUSION: Our study expands the allelic spectrum of ELOVL4-related ISQMR. The detection of the same exonic deletion in two unrelated Saudi family from same tribe suggests a tribal founder mutation.


Assuntos
Ictiose Lamelar , Ictiose , Degeneração Macular , Humanos , Mutação , Degeneração Macular/genética , Retina/metabolismo , Ictiose/genética , Carbono , Proteínas do Olho/genética , Proteínas de Membrana/genética
2.
Eur J Hum Genet ; 31(11): 1251-1260, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37644171

RESUMO

Heterozygous, pathogenic CUX1 variants are associated with global developmental delay or intellectual disability. This study delineates the clinical presentation in an extended cohort and investigates the molecular mechanism underlying the disorder in a Cux1+/- mouse model. Through international collaboration, we assembled the phenotypic and molecular information for 34 individuals (23 unpublished individuals). We analyze brain CUX1 expression and susceptibility to epilepsy in Cux1+/- mice. We describe 34 individuals, from which 30 were unrelated, with 26 different null and four missense variants. The leading symptoms were mild to moderate delayed speech and motor development and borderline to moderate intellectual disability. Additional symptoms were muscular hypotonia, seizures, joint laxity, and abnormalities of the forehead. In Cux1+/- mice, we found delayed growth, histologically normal brains, and increased susceptibility to seizures. In Cux1+/- brains, the expression of Cux1 transcripts was half of WT animals. Expression of CUX1 proteins was reduced, although in early postnatal animals significantly more than in adults. In summary, disease-causing CUX1 variants result in a non-syndromic phenotype of developmental delay and intellectual disability. In some individuals, this phenotype ameliorates with age, resulting in a clinical catch-up and normal IQ in adulthood. The post-transcriptional balance of CUX1 expression in the heterozygous brain at late developmental stages appears important for this favorable clinical course.


Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Adulto , Animais , Humanos , Camundongos , Heterozigoto , Proteínas de Homeodomínio/genética , Deficiência Intelectual/genética , Deficiência Intelectual/diagnóstico , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia , Fenótipo , Proteínas Repressoras/genética , Convulsões , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Eur J Hum Genet ; 31(9): 1040-1047, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37407733

RESUMO

HNRNPU encodes a multifunctional RNA-binding protein that plays critical roles in regulating pre-mRNA splicing, mRNA stability, and translation. Aberrant expression and dysregulation of HNRNPU have been implicated in various human diseases, including cancers and neurological disorders. We applied a next generation sequencing based assay (EPIC-NGS) to investigate genome-wide methylation profiling for >2 M CpGs for 7 individuals with a neurodevelopmental disorder associated with HNRNPU germline pathogenic loss-of-function variants. Compared to healthy individuals, 227 HNRNPU-associated differentially methylated positions were detected. Both hyper- and hypomethylation alterations were identified but the former predominated. The identification of a methylation episignature for HNRNPU-associated neurodevelopmental disorder (NDD) implicates HNPRNPU-related chromatin alterations in the aetiopathogenesis of this disorder and suggests that episignature profiling should have clinical utility as a predictor for the pathogenicity of HNRNPU variants of uncertain significance. The detection of a methylation episignaure for HNRNPU-associated NDD is consistent with a recent report of a methylation episignature for HNRNPK-associated NDD.


Assuntos
Epigenoma , Transtornos do Neurodesenvolvimento , Humanos , Metilação de DNA , Células Germinativas , Mutação em Linhagem Germinativa , Transtornos do Neurodesenvolvimento/genética
4.
Nat Commun ; 14(1): 853, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36792598

RESUMO

Following the diagnosis of a paediatric disorder caused by an apparently de novo mutation, a recurrence risk of 1-2% is frequently quoted due to the possibility of parental germline mosaicism; but for any specific couple, this figure is usually incorrect. We present a systematic approach to providing individualized recurrence risk. By combining locus-specific sequencing of multiple tissues to detect occult mosaicism with long-read sequencing to determine the parent-of-origin of the mutation, we show that we can stratify the majority of couples into one of seven discrete categories associated with substantially different risks to future offspring. Among 58 families with a single affected offspring (representing 59 de novo mutations in 49 genes), the recurrence risk for 35 (59%) was decreased below 0.1%, but increased owing to parental mixed mosaicism for 5 (9%)-that could be quantified in semen for paternal cases (recurrence risks of 5.6-12.1%). Implementation of this strategy offers the prospect of driving a major transformation in the practice of genetic counselling.


Assuntos
Pai , Parto , Masculino , Gravidez , Feminino , Humanos , Criança , Mutação , Medição de Risco , Células Germinativas , Mosaicismo , Linhagem , Mutação em Linhagem Germinativa
5.
EMBO Mol Med ; 15(3): e16491, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36704923

RESUMO

Dysfunction of the endoplasmic reticulum (ER) in insulin-producing beta cells results in cell loss and diabetes mellitus. Here we report on five individuals from three different consanguineous families with infancy-onset diabetes mellitus and severe neurodevelopmental delay caused by a homozygous p.(Arg371Ser) mutation in FICD. The FICD gene encodes a bifunctional Fic domain-containing enzyme that regulates the ER Hsp70 chaperone, BiP, via catalysis of two antagonistic reactions: inhibitory AMPylation and stimulatory deAMPylation of BiP. Arg371 is a conserved residue in the Fic domain active site. The FICDR371S mutation partially compromises BiP AMPylation in vitro but eliminates all detectable deAMPylation activity. Overexpression of FICDR371S or knock-in of the mutation at the FICD locus of stressed CHO cells results in inappropriately elevated levels of AMPylated BiP and compromised secretion. These findings, guided by human genetics, highlight the destructive consequences of de-regulated BiP AMPylation and raise the prospect of tuning FICD's antagonistic activities towards therapeutic ends.


Assuntos
Diabetes Mellitus , Chaperona BiP do Retículo Endoplasmático , Animais , Cricetinae , Humanos , Lactente , Processamento de Proteína Pós-Traducional , Cricetulus , Monofosfato de Adenosina
6.
Genet Med ; 25(1): 90-102, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36318270

RESUMO

PURPOSE: Brain monoamine vesicular transport disease is an infantile-onset movement disorder that mimics cerebral palsy. In 2013, the homozygous SLC18A2 variant, p.Pro387Leu, was first reported as a cause of this rare disorder, and dopamine agonists were efficient for treating affected individuals from a single large family. To date, only 6 variants have been reported. In this study, we evaluated genotype-phenotype correlations in individuals with biallelic SLC18A2 variants. METHODS: A total of 42 affected individuals with homozygous SLC18A2 variant alleles were identified. We evaluated genotype-phenotype correlations and the missense variants in the affected individuals based on the structural modeling of rat VMAT2 encoded by Slc18a2, with cytoplasm- and lumen-facing conformations. A Caenorhabditis elegans model was created for functional studies. RESULTS: A total of 19 homozygous SLC18A2 variants, including 3 recurrent variants, were identified using exome sequencing. The affected individuals typically showed global developmental delay, hypotonia, dystonia, oculogyric crisis, and autonomic nervous system involvement (temperature dysregulation/sweating, hypersalivation, and gastrointestinal dysmotility). Among the 58 affected individuals described to date, 16 (28%) died before the age of 13 years. Of the 17 patients with p.Pro237His, 9 died, whereas all 14 patients with p.Pro387Leu survived. Although a dopamine agonist mildly improved the disease symptoms in 18 of 21 patients (86%), some affected individuals with p.Ile43Phe and p.Pro387Leu showed milder phenotypes and presented prolonged survival even without treatment. The C. elegans model showed behavioral abnormalities. CONCLUSION: These data expand the phenotypic and genotypic spectra of SLC18A2-related disorders.


Assuntos
Encefalopatias , Distonia , Transtornos dos Movimentos , Humanos , Animais , Ratos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas Vesiculares de Transporte de Monoamina/genética , Proteínas Vesiculares de Transporte de Monoamina/metabolismo , Transtornos dos Movimentos/genética , Aminas , Encéfalo/metabolismo
7.
Nat Genet ; 54(10): 1534-1543, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36195757

RESUMO

Sleep apnea is a common disorder that represents a global public health burden. KCNK3 encodes TASK-1, a K+ channel implicated in the control of breathing, but its link with sleep apnea remains poorly understood. Here we describe a new developmental disorder with associated sleep apnea (developmental delay with sleep apnea, or DDSA) caused by rare de novo gain-of-function mutations in KCNK3. The mutations cluster around the 'X-gate', a gating motif that controls channel opening, and produce overactive channels that no longer respond to inhibition by G-protein-coupled receptor pathways. However, despite their defective X-gating, these mutant channels can still be inhibited by a range of known TASK channel inhibitors. These results not only highlight an important new role for TASK-1 K+ channels and their link with sleep apnea but also identify possible therapeutic strategies.


Assuntos
Mutação com Ganho de Função , Síndromes da Apneia do Sono , Criança , Deficiências do Desenvolvimento , Humanos , Mutação/genética , Proteínas do Tecido Nervoso , Canais de Potássio de Domínios Poros em Tandem , Síndromes da Apneia do Sono/genética
9.
Arch Dis Child Educ Pract Ed ; 107(5): 338-343, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-34045287

RESUMO

Withdrawal of life-sustaining support on the neonatal unit presents a set of unique challenges specific in this age group of patients. This article aims to provide an overview of the key factors that should be considered during this process. It explores the practicalities of care delivery that reflects the psychological impact of undergoing end-of-life care on parents and team members. It will also highlight the role of clinical genetics that can be used to understand the underlying disease pathology and therefore can be a valuable tool in the difficult decision-making process.


Assuntos
Terapia Intensiva Neonatal , Assistência Terminal , Tomada de Decisões , Feminino , Humanos , Recém-Nascido , Unidades de Terapia Intensiva Neonatal , Cuidados Paliativos , Encaminhamento e Consulta
11.
Ophthalmic Genet ; 43(6): 809-816, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36695497

RESUMO

BACKGROUND: Anophthalmia, microphthalmia and coloboma are a genetically heterogenous spectrum of developmental eye disorders. Recently, variants in the Wnt-pathway gene Frizzled Class Receptor 5 (FZD5) have been identified in individuals with coloboma and rarely microphthalmia, sometimes with additional phenotypes and variable penetrance. MATERIALS AND METHODS: We identified variants in FZD5 in individuals with developmental eye disorders from the UK (including the DDD Study [www.ddduk.org/access.html]), France and Spain using whole genome/exome sequencing or customized NGS panels of ocular development genes. RESULTS: We report eight new families with FZD5 variants and ocular coloboma. Three individuals presented with additional syndromic features, two explicable by additional variants in other genes (SLC12A2 and DDX3X). In two families initially showing incomplete penetrance, re-examination of apparently unaffected carrier individuals revealed subtle ocular colobomatous phenotypes. Finally, we report two families with microphthalmia in addition to coloboma, representing the second and third reported cases of this phenotype in conjunction with FZD5 variants. CONCLUSIONS: Our findings indicate FZD5 variants are typically associated with isolated ocular coloboma, occasionally microphthalmia, and that extraocular phenotypes are likely to be explained by other gene alterations.


Assuntos
Anoftalmia , Coloboma , Microftalmia , Humanos , Microftalmia/genética , Coloboma/diagnóstico , Coloboma/genética , Olho , Anoftalmia/genética , Fenótipo , Receptores Frizzled/genética , Membro 2 da Família 12 de Carreador de Soluto/genética
12.
Brain Commun ; 3(3): fcab162, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34466801

RESUMO

Pathogenic NR2F1 variants cause a rare autosomal dominant neurodevelopmental disorder referred to as the Bosch-Boonstra-Schaaf Optic Atrophy Syndrome. Although visual loss is a prominent feature seen in affected individuals, the molecular and cellular mechanisms contributing to visual impairment are still poorly characterized. We conducted a deep phenotyping study on a cohort of 22 individuals carrying pathogenic NR2F1 variants to document the neurodevelopmental and ophthalmological manifestations, in particular the structural and functional changes within the retina and the optic nerve, which have not been detailed previously. The visual impairment became apparent in early childhood with small and/or tilted hypoplastic optic nerves observed in 10 cases. High-resolution optical coherence tomography imaging confirmed significant loss of retinal ganglion cells with thinning of the ganglion cell layer, consistent with electrophysiological evidence of retinal ganglion cells dysfunction. Interestingly, for those individuals with available longitudinal ophthalmological data, there was no significant deterioration in visual function during the period of follow-up. Diffusion tensor imaging tractography studies showed defective connections and disorganization of the extracortical visual pathways. To further investigate how pathogenic NR2F1 variants impact on retinal and optic nerve development, we took advantage of an Nr2f1 mutant mouse disease model. Abnormal retinogenesis in early stages of development was observed in Nr2f1 mutant mice with decreased retinal ganglion cell density and disruption of retinal ganglion cell axonal guidance from the neural retina into the optic stalk, accounting for the development of optic nerve hypoplasia. The mutant mice showed significantly reduced visual acuity based on electrophysiological parameters with marked conduction delay and decreased amplitude of the recordings in the superficial layers of the visual cortex. The clinical observations in our study cohort, supported by the mouse data, suggest an early neurodevelopmental origin for the retinal and optic nerve head defects caused by NR2F1 pathogenic variants, resulting in congenital vision loss that seems to be non-progressive. We propose NR2F1 as a major gene that orchestrates early retinal and optic nerve head development, playing a key role in the maturation of the visual system.

13.
Am J Med Genet A ; 182(7): 1637-1654, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32319732

RESUMO

With advances in genetic testing and improved access to such advances, whole exome sequencing is becoming a first-line investigation in clinical work-up of children with developmental delay/intellectual disability (ID). As a result, the need to understand the importance of genetic variants and its effect on the clinical phenotype is increasing. Here, we report on the largest cohort of patients with HNRNPU variants. These 21 patients follow on from the previous study published by Yates et al. in 2017 from our group predominantly identified from the Deciphering Developmental Disorders study that reported seven patients with HNRNPU variants. All the probands reported here have a de novo loss-of-function variant. These probands have craniofacial dysmorphic features, in the majority including widely spaced teeth, microcephaly, high arched eyebrows, and palpebral fissure abnormalities. Many of the patients in the group also have moderate to severe ID and seizures that tend to start in early childhood. This series has allowed us to define a novel neurodevelopmental syndrome, with a likely mechanism of haploinsufficiency, and expand substantially on already published literature on HNRNPU-related neurodevelopmental syndrome.


Assuntos
Ribonucleoproteínas Nucleares Heterogêneas Grupo U/genética , Transtornos do Neurodesenvolvimento/etiologia , Adolescente , Encéfalo/diagnóstico por imagem , Criança , Pré-Escolar , Anormalidades Craniofaciais/etiologia , Feminino , Haploinsuficiência/genética , Humanos , Lactente , Deficiência Intelectual/genética , Masculino , Microcefalia/etiologia , Transtornos do Neurodesenvolvimento/genética , Gravidez , Convulsões/genética , Síndrome
14.
Front Mol Neurosci ; 13: 12, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32116545

RESUMO

Multiple TREX mRNA export complex subunits (e.g., THOC1, THOC2, THOC5, THOC6, THOC7) have now been implicated in neurodevelopmental disorders (NDDs), neurodegeneration and cancer. We previously implicated missense and splicing-defective THOC2 variants in NDDs and a broad range of other clinical features. Here we report 10 individuals from nine families with rare missense THOC2 variants including the first case of a recurrent variant (p.Arg77Cys), and an additional individual with an intragenic THOC2 microdeletion (Del-Ex37-38). Ex vivo missense variant testing and patient-derived cell line data from current and published studies show 9 of the 14 missense THOC2 variants result in reduced protein stability. The splicing-defective and deletion variants result in a loss of small regions of the C-terminal THOC2 RNA binding domain (RBD). Interestingly, reduced stability of THOC2 variant proteins has a flow-on effect on the stability of the multi-protein TREX complex; specifically on the other NDD-associated THOC subunits. Our current, expanded cohort refines the core phenotype of THOC2 NDDs to language disorder and/or ID, with a variable severity, and disorders of growth. A subset of affected individuals' has severe-profound ID, persistent hypotonia and respiratory abnormalities. Further investigations to elucidate the pathophysiological basis for this severe phenotype are warranted.

16.
Genet Med ; 21(6): 1295-1307, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30349098

RESUMO

PURPOSE: Pathogenic variants in ARID1B are one of the most frequent causes of intellectual disability (ID) as determined by large-scale exome sequencing studies. Most studies published thus far describe clinically diagnosed Coffin-Siris patients (ARID1B-CSS) and it is unclear whether these data are representative for patients identified through sequencing of unbiased ID cohorts (ARID1B-ID). We therefore sought to determine genotypic and phenotypic differences between ARID1B-ID and ARID1B-CSS. In parallel, we investigated the effect of different methods of phenotype reporting. METHODS: Clinicians entered clinical data in an extensive web-based survey. RESULTS: 79 ARID1B-CSS and 64 ARID1B-ID patients were included. CSS-associated dysmorphic features, such as thick eyebrows, long eyelashes, thick alae nasi, long and/or broad philtrum, small nails and small or absent fifth distal phalanx and hypertrichosis, were observed significantly more often (p < 0.001) in ARID1B-CSS patients. No other significant differences were identified. CONCLUSION: There are only minor differences between ARID1B-ID and ARID1B-CSS patients. ARID1B-related disorders seem to consist of a spectrum, and patients should be managed similarly. We demonstrated that data collection methods without an explicit option to report the absence of a feature (such as most Human Phenotype Ontology-based methods) tended to underestimate gene-related features.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Anormalidades Múltiplas/genética , Adolescente , Adulto , Criança , Pré-Escolar , Proteínas Cromossômicas não Histona/genética , Exoma , Face/anormalidades , Feminino , Estudos de Associação Genética/métodos , Variação Genética/genética , Deformidades Congênitas da Mão/genética , Humanos , Lactente , Recém-Nascido , Deficiência Intelectual/genética , Masculino , Micrognatismo/genética , Pessoa de Meia-Idade , Mutação , Pescoço/anormalidades , Penetrância
17.
Front Genet ; 9: 149, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29922329

RESUMO

Repeats in coding and non-coding regions have increasingly been associated with many human genetic disorders, such as Richieri-Costa-Pereira syndrome (RCPS). RCPS, mostly characterized by midline cleft mandible, Robin sequence and limb defects, is an autosomal-recessive acrofacial dysostosis mainly reported in Brazilian patients. This disorder is caused by decreased levels of EIF4A3, mostly due to an increased number of repeats at the EIF4A3 5'UTR. EIF4A3 5'UTR alleles are CG-rich and vary in size and organization of three types of motifs. An exclusive allelic pattern was identified among affected individuals, in which the CGCA-motif is the most prevalent, herein referred as "disease-associated CGCA-20nt motif." The origin of the pathogenic alleles containing the disease-associated motif, as well as the functional effects of the 5'UTR motifs on EIF4A3 expression, to date, are entirely unknown. Here, we characterized 43 different EIF4A3 5'UTR alleles in a cohort of 380 unaffected individuals. We identified eight heterozygous unaffected individuals harboring the disease-associated CGCA-20nt motif and our haplotype analyses indicate that there are more than one haplotype associated with RCPS. The combined analysis of number, motif organization and haplotypic diversity, as well as the observation of two apparently distinct haplotypes associated with the disease-associated CGCA-20nt motif, suggest that the RCPS alleles might have arisen from independent unequal crossing-over events between ancient alleles at least twice. Moreover, we have shown that the number and sequence of motifs in the 5'UTR region is associated with EIF4A3 repression, which is not mediated by CpG methylation. In conclusion, this study has shown that the large number of repeats in EIF4A3 does not represent a dynamic mutation and RCPS can arise in any population harboring alleles with the CGCA-20nt motif. We also provided further evidence that EIF4A3 5'UTR is a regulatory region and the size and sequence type of the repeats at 5'UTR may contribute to clinical variability in RCPS.

18.
Am J Hum Genet ; 100(4): 650-658, 2017 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-28343630

RESUMO

Intellectual disability (ID) is a highly heterogeneous disorder involving at least 600 genes, yet a genetic diagnosis remains elusive in ∼35%-40% of individuals with moderate to severe ID. Recent meta-analyses statistically analyzing de novo mutations in >7,000 individuals with neurodevelopmental disorders highlighted mutations in PPM1D as a possible cause of ID. PPM1D is a type 2C phosphatase that functions as a negative regulator of cellular stress-response pathways by mediating a feedback loop of p38-p53 signaling, thereby contributing to growth inhibition and suppression of stress-induced apoptosis. We identified 14 individuals with mild to severe ID and/or developmental delay and de novo truncating PPM1D mutations. Additionally, deep phenotyping revealed overlapping behavioral problems (ASD, ADHD, and anxiety disorders), hypotonia, broad-based gait, facial dysmorphisms, and periods of fever and vomiting. PPM1D is expressed during fetal brain development and in the adult brain. All mutations were located in the last or penultimate exon, suggesting escape from nonsense-mediated mRNA decay. Both PPM1D expression analysis and cDNA sequencing in EBV LCLs of individuals support the presence of a stable truncated transcript, consistent with this hypothesis. Exposure of cells derived from individuals with PPM1D truncating mutations to ionizing radiation resulted in normal p53 activation, suggesting that p53 signaling is unaffected. However, a cell-growth disadvantage was observed, suggesting a possible effect on the stress-response pathway. Thus, we show that de novo truncating PPM1D mutations in the last and penultimate exons cause syndromic ID, which provides additional insight into the role of cell-cycle checkpoint genes in neurodevelopmental disorders.


Assuntos
Éxons , Deficiência Intelectual/genética , Mutação , Proteína Fosfatase 2C/genética , Adolescente , Ciclo Celular , Criança , Pré-Escolar , Humanos , Deficiência Intelectual/patologia , Adulto Jovem
19.
Am J Hum Genet ; 100(1): 91-104, 2017 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-27939640

RESUMO

Identification of over 500 epigenetic regulators in humans raises an interesting question regarding how chromatin dysregulation contributes to different diseases. Bromodomain and PHD finger-containing protein 1 (BRPF1) is a multivalent chromatin regulator possessing three histone-binding domains, one non-specific DNA-binding module, and several motifs for interacting with and activating three lysine acetyltransferases. Genetic analyses of fish brpf1 and mouse Brpf1 have uncovered an important role in skeletal, hematopoietic, and brain development, but it remains unclear how BRPF1 is linked to human development and disease. Here, we describe an intellectual disability disorder in ten individuals with inherited or de novo monoallelic BRPF1 mutations. Symptoms include infantile hypotonia, global developmental delay, intellectual disability, expressive language impairment, and facial dysmorphisms. Central nervous system and spinal abnormalities are also seen in some individuals. These clinical features overlap with but are not identical to those reported for persons with KAT6A or KAT6B mutations, suggesting that BRPF1 targets these two acetyltransferases and additional partners in humans. Functional assays showed that the resulting BRPF1 variants are pathogenic and impair acetylation of histone H3 at lysine 23, an abundant but poorly characterized epigenetic mark. We also found a similar deficiency in different lines of Brpf1-knockout mice. These data indicate that aberrations in the chromatin regulator gene BRPF1 cause histone H3 acetylation deficiency and a previously unrecognized intellectual disability syndrome.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Cromatina/metabolismo , Histonas/metabolismo , Deficiência Intelectual/genética , Mutação , Proteínas Nucleares/genética , Acetilação , Adolescente , Alelos , Animais , Proteínas de Transporte/genética , Criança , Cromatina/química , Proteínas de Ligação a DNA , Deficiências do Desenvolvimento/genética , Face/anormalidades , Feminino , Histona Acetiltransferases/genética , Humanos , Lisina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hipotonia Muscular/genética , Síndrome
20.
Am J Hum Genet ; 99(1): 125-38, 2016 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-27374770

RESUMO

DNA replication precisely duplicates the genome to ensure stable inheritance of genetic information. Impaired licensing of origins of replication during the G1 phase of the cell cycle has been implicated in Meier-Gorlin syndrome (MGS), a disorder defined by the triad of short stature, microtia, and a/hypoplastic patellae. Biallelic partial loss-of-function mutations in multiple components of the pre-replication complex (preRC; ORC1, ORC4, ORC6, CDT1, or CDC6) as well as de novo stabilizing mutations in the licensing inhibitor, GMNN, cause MGS. Here we report the identification of mutations in CDC45 in 15 affected individuals from 12 families with MGS and/or craniosynostosis. CDC45 encodes a component of both the pre-initiation (preIC) and CMG helicase complexes, required for initiation of DNA replication origin firing and ongoing DNA synthesis during S-phase itself, respectively, and hence is functionally distinct from previously identified MGS-associated genes. The phenotypes of affected individuals range from syndromic coronal craniosynostosis to severe growth restriction, fulfilling diagnostic criteria for Meier-Gorlin syndrome. All mutations identified were biallelic and included synonymous mutations altering splicing of physiological CDC45 transcripts, as well as amino acid substitutions expected to result in partial loss of function. Functionally, mutations reduce levels of full-length transcripts and protein in subject cells, consistent with partial loss of CDC45 function and a predicted limited rate of DNA replication and cell proliferation. Our findings therefore implicate the preIC as an additional protein complex involved in the etiology of MGS and connect the core cellular machinery of genome replication with growth, chondrogenesis, and cranial suture homeostasis.


Assuntos
Proteínas de Ciclo Celular/genética , Microtia Congênita/genética , Craniossinostoses/genética , Transtornos do Crescimento/genética , Micrognatismo/genética , Mutação , Patela/anormalidades , Adolescente , Adulto , Alelos , Processamento Alternativo/genética , Sequência de Aminoácidos , Âmnio/citologia , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/deficiência , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Células Cultivadas , Criança , Pré-Escolar , Análise Mutacional de DNA , Replicação do DNA , Exoma/genética , Éxons/genética , Feminino , Estudos de Associação Genética , Humanos , Masculino , Modelos Moleculares , Conformação Proteica , Síndrome , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...