Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Sci Total Environ ; 749: 141473, 2020 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-32836122

RESUMO

Seabirds are suitable biomonitors for several persistent organic pollutants (POP), such as polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs) and polycyclic aromatic hydrocarbons (PAHs), although scarce studies of PAHs in seabirds are available, especially in South American populations. Therefore, this study aimed to assess OCPs, PCBs and PAHs, through gas chromatography-electron capture detector (GC-ECD) and gas chromatography-mass spectrometry (GC-MS) analyses, in liver (n = 9) and muscle tissue (n = 13) from juvenile Magellanic penguins (Spheniscus magellanicus) found stranded on the coast of Rio de Janeiro, Southeastern Brazil. DDT-related compounds were the most frequently detected OCP, and 4,4'-dichlorodiphenyldichloroethylene (DDE), the main DDT metabolite found in penguin tissues. OCP concentrations in liver were two-fold higher than in muscle tissues. Compound specific ratios identified recent exposure of penguins to some OCPs as well as evidence of legacy pollution associated with industrial sources. The predominant PCB congeners were PCB 8/5, PCB 138/160 and PCB 153/132, with concentrations ranging from

Assuntos
Hidrocarbonetos Clorados , Praguicidas , Bifenilos Policlorados , Hidrocarbonetos Policíclicos Aromáticos , Spheniscidae , Animais , Brasil , Monitoramento Ambiental , Cromatografia Gasosa-Espectrometria de Massas , Hidrocarbonetos Clorados/análise , Praguicidas/análise , Bifenilos Policlorados/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Distribuição Tecidual
2.
Front Microbiol ; 8: 1019, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28659874

RESUMO

One consequence of oil production is the possibility of unplanned accidental oil spills; therefore, it is important to evaluate the potential of indigenous microorganisms (both prokaryotes and eukaryotes) from different oceanic basins to degrade oil. The aim of this study was to characterize the microbial response during the biodegradation process of Brazilian crude oil, both with and without the addition of the dispersant Corexit 9500, using deep-sea water samples from the Amazon equatorial margin basins, Foz do Amazonas and Barreirinhas, in the dark and at low temperatures (4°C). We collected deep-sea samples in the field (about 2570 m below the sea surface), transported the samples back to the laboratory under controlled environmental conditions (5°C in the dark) and subsequently performed two laboratory biodegradation experiments that used metagenomics supported by classical microbiological methods and chemical analysis to elucidate both taxonomic and functional microbial diversity. We also analyzed several physical-chemical and biological parameters related to oil biodegradation. The concomitant depletion of dissolved oxygen levels, oil droplet density characteristic to oil biodegradation, and BTEX concentration with an increase in microbial counts revealed that oil can be degraded by the autochthonous deep-sea microbial communities. Indigenous bacteria (e.g., Alteromonadaceae, Colwelliaceae, and Alcanivoracaceae), archaea (e.g., Halobacteriaceae, Desulfurococcaceae, and Methanobacteriaceae), and eukaryotic microbes (e.g., Microsporidia, Ascomycota, and Basidiomycota) from the Amazonian margin deep-sea water were involved in biodegradation of Brazilian crude oil within less than 48-days in both treatments, with and without dispersant, possibly transforming oil into microbial biomass that may fuel the marine food web.

3.
Sci Total Environ ; 557-558: 453-68, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27017076

RESUMO

Because of the extreme conditions of the Deepwater Horizon (DWH) release (turbulent flow at 1500m depth and 5°C water temperature) and the sub-surface application of dispersant, small but neutrally buoyant oil droplets <70µm were formed, remained in the water column and were subjected to in-situ biodegradation processes. In order to investigate the biodegradation of Macondo oil components during the release, we designed and performed an experiment to evaluate the interactions of the indigenous microbial communities present in the deep waters of the Gulf of Mexico (GOM) with oil droplets of two representative sizes (10µm and 30µm median volume diameter) created with Macondo source oil in the presence of Corexit 9500 using natural seawater collected at the depth of 1100-1300m in the vicinity of the DWH wellhead. The evolution of the oil was followed in the dark and at 5°C for 64days by collecting sacrificial water samples at fixed intervals and analyzing them for a wide range of chemical and biological parameters including volatile components, saturated and aromatic hydrocarbons, dispersant markers, dissolved oxygen, nutrients, microbial cell counts and microbial population dynamics. A one phase exponential decay from a plateau model was used to calculate degradation rates and lag times for more than 150 individual oil components. Calculations were normalized to a conserved petroleum biomarker (30αß-hopane). Half-lives ranged from about 3days for easily degradable compounds to about 60days for higher molecular weight aromatics. Rapid degradation was observed for BTEX, 2-3 ring PAHs, and n-alkanes below n-C23. The results in this experimental study showed good agreement with the n-alkane (n-C13 to n-C26) half-lives (0.6-9.5days) previously reported for the Deepwater Horizon plume samples and other laboratory studies with chemically dispersed Macondo oil conducted at low temperatures (<8°C). The responses of the microbial populations also were consistent with what was reported during the actual oil release, e.g. Colwellia, Cycloclasticus and Oceanospirillales (including the specific DWH Oceanospirillales) were present and increased in numbers indicating that they were degrading components of the oil. The consistency of the field and laboratory data indicate that these results could be used, in combination with other field and model data to characterize the dissipation of Macondo oil in the deepwater environment as part of the risk assessment estimations.


Assuntos
Biodegradação Ambiental , Monitoramento Ambiental , Poluição por Petróleo , Petróleo/metabolismo , Água do Mar/microbiologia , Microbiologia da Água , Poluentes Químicos da Água/análise , Gammaproteobacteria , Golfo do México , Petróleo/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Água do Mar/química , Poluentes Químicos da Água/metabolismo
4.
Environ Pollut ; 123(2): 291-9, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12628208

RESUMO

Surface sediments throughout Montego Bay, Jamaica were collected in 1995 and analyzed for their trace metal and trace organic contaminant content. A variety of trace metals, petroleum hydrocarbons, polycyclic aromatic hydrocarbons, coprostanol as well as chlorinated hydrocarbons such as pesticides and polychlorinated biphenyls were detected and provide evidence for several anthropogenic inputs to the bay. Two main sources of these chemicals are the Montego River and the North Gully, the latter being more significant. Particle-associated pollutants were found to be distributed along the Montego River plume, as well as being transported by the prevailing water currents to the South-Western sections of the bay, probably through re-suspension of enriched fine sediments from the North Gully outfall area.


Assuntos
Sedimentos Geológicos/química , Compostos Orgânicos/análise , Oligoelementos/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Hidrocarbonetos/análise , Jamaica , Praguicidas/análise , Água do Mar/química , Esgotos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA