Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
NPJ Genom Med ; 6(1): 74, 2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34531397

RESUMO

Cerebral palsy (CP) is the most common cause of childhood physical disability, with incidence between 1/500 and 1/700 births in the developed world. Despite increasing evidence for a major contribution of genetics to CP aetiology, genetic testing is currently not performed systematically. We assessed the diagnostic rate of genome sequencing (GS) in a clinically unselected cohort of 150 singleton CP patients, with CP confirmed at >4 years of age. Clinical grade GS was performed on the proband and variants were filtered, and classified according to American College of Medical Genetics and Genomics-Association for Molecular Pathology (ACMG-AMP) guidelines. Variants classified as pathogenic or likely pathogenic (P/LP) were further assessed for their contribution to CP. In total, 24.7% of individuals carried a P/LP variant(s) causing or increasing risk of CP, with 4.7% resolved by copy number variant analysis and 20% carrying single nucleotide or indel variants. A further 34.7% carried one or more rare, high impact variants of uncertain significance (VUS) in variation intolerant genes. Variants were identified in a heterogeneous group of genes, including genes associated with hereditary spastic paraplegia, clotting and thrombophilic disorders, small vessel disease, and other neurodevelopmental disorders. Approximately 1/2 of individuals were classified as likely to benefit from changed clinical management as a result of genetic findings. In addition, no significant association between genetic findings and clinical factors was detectable in this cohort, suggesting that systematic sequencing of CP will be required to avoid missed diagnoses.

2.
Genomics ; 76(1-3): 58-65, 2001 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-11549317

RESUMO

The identification of SPG7 as the gene defective in a recessive form of spastic paraplegia has drawn attention to the yeast protein family of ATP-dependent zinc metalloproteases. The protein encoded by SPG7, paraplegin, shows high homology to members of this protein family. Recently, many mammalian ATP-dependent zinc metalloproteases have been identified and considered as possible candidates for defects in other forms of hereditary spastic paraplegia and possibly other neurodegenerative disorders. So far only a partial sequence has been available for one of those genes, ATPase family gene-3, yeast-like-1 (AFG3L1). We have carried out detailed molecular analysis of this gene and identified and characterized its mouse orthologue, Afg3l1. Our data indicate that AFG3L1 is transcribed into four mRNA isoforms that are not translated in humans. Afg3l1 encodes a protein with high homology to paraplegin and the other members of the ATP-dependent zinc metalloprotease family. Like the other ATP-dependent zinc metalloproteases, Afg3l1 localizes to the mitochondria.


Assuntos
Metaloendopeptidases/química , Metaloendopeptidases/genética , Mitocôndrias/enzimologia , Homologia de Sequência de Aminoácidos , Células 3T3 , ATPases Associadas a Diversas Atividades Celulares , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Linhagem Celular , Mapeamento Cromossômico , Etiquetas de Sequências Expressas , Perfilação da Expressão Gênica , Células HeLa , Humanos , Metaloendopeptidases/fisiologia , Camundongos , Dados de Sequência Molecular , Paraplegia Espástica Hereditária/enzimologia , Paraplegia Espástica Hereditária/genética , Zinco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...