Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Free Radic Biol Med ; 31(2): 191-204, 2001 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-11440831

RESUMO

Steady-state gradients of NO within tissues and cells are controlled by rates of NO synthesis, diffusion, and decomposition. Mammalian cells and tissues actively decompose NO. Of several cell lines examined, the human colon CaCo-2 cell produces the most robust NO consumption activity. Cellular NO metabolism is mostly O2-dependent, produces near stoichiometric NO3-, and is inhibited by the heme poisons CN-, CO (K(I) approximately 3 microM), phenylhydrazine, and NO and the flavoenzyme inhibitor diphenylene iodonium. NO consumption is saturable by O2 and NO and shows apparent K(M) values for O2 and NO of 17 and 0.2 microM, respectively. Mitochondrial respiration, O2*-, and H2O2 are neither sufficient nor necessary for O2-dependent NO metabolism by cells. The existence of an efficient mammalian heme and flavin-dependent NO dioxygenase is suggested. NO dioxygenation protects the NO-sensitive aconitases, cytochrome c oxidase, and cellular respiration from inhibition, and may serve a dual function in cells by limiting NO toxicity and by spatially coupling NO and O2 gradients.


Assuntos
Óxido Nítrico/metabolismo , Oxigênio/metabolismo , Aconitato Hidratase/antagonistas & inibidores , Animais , Monóxido de Carbono/farmacologia , Linhagem Celular , Sistema Livre de Células , Cianetos/farmacologia , Radicais Livres/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Técnicas In Vitro , Cinética , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Nitratos/metabolismo , Oxigênio/farmacologia , Oxigenases/metabolismo , Ratos , Superóxidos/metabolismo
2.
J Biol Chem ; 275(41): 31581-7, 2000 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-10922365

RESUMO

Widely distributed flavohemoglobins (flavoHbs) function as NO dioxygenases and confer upon cells a resistance to NO toxicity. FlavoHbs from Saccharomyces cerevisiae, Alcaligenes eutrophus, and Escherichia coli share similar spectra, O(2), NO, and CO binding kinetics, and steady-state NO dioxygenation kinetics. Turnover numbers (V(max)) for S. cerevisiae, A. eutrophus, and E. coli flavoHbs are 112, 290, and 365 NO heme(-1) s(-1), respectively, at 37 degrees C with 200 microm O(2). The K(M) values for NO are low and range from 0.1 to 0.25 microm. V(max)/K(M)(NO) ratios of 900-2900 microm(-1) s(-1) indicate an extremely efficient dioxygenation mechanism. Approximate K(M) values for O(2) range from 60 to 90 microm. NO inhibits the dioxygenases at NO:O(2) ratios of > or =1:100 and makes true K(M)(O(2)) values difficult to determine. High and roughly equal second order rate constants for O(2) and NO association with the reduced flavoHbs (17-50 microm(-1) s(-1)) and small NO dissociation rate constants suggest that NO inhibits the dioxygenase reaction by forming inactive flavoHbNO complexes. Carbon monoxide also binds reduced flavoHbs with high affinity and competitively inhibits NO dioxygenases with respect to O(2) (K(I)(CO) = approximately 1 microm). These results suggest that flavoHbs and related hemoglobins evolved as NO detoxifying components of nitrogen metabolism capable of discriminating O(2) from inhibitory NO and CO.


Assuntos
Proteínas de Bactérias/metabolismo , Hemeproteínas/metabolismo , Oxigenases/metabolismo , Alcaligenes/enzimologia , Alcaligenes/metabolismo , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Monóxido de Carbono/metabolismo , Monóxido de Carbono/farmacologia , Inibidores Enzimáticos/farmacologia , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Flavina-Adenina Dinucleotídeo/farmacologia , Proteínas Fúngicas/antagonistas & inibidores , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Hemeproteínas/antagonistas & inibidores , Hemeproteínas/química , Cinética , Ligantes , Óxido Nítrico/metabolismo , Óxido Nítrico/farmacologia , Oxigênio/metabolismo , Oxigênio/farmacologia , Oxigenases/antagonistas & inibidores , Oxigenases/química , Ligação Proteica , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/metabolismo , Espectrofotometria
3.
J Biol Chem ; 275(17): 12581-9, 2000 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-10777548

RESUMO

Escherichia coli expresses an inducible flavohemoglobin possessing robust NO dioxygenase activity. At 37 degrees C, the enzyme shows a maximal turnover number (V(max)) of 670 s(-1) and K(m) values for NADH, NO, and O(2) equal to 4.8, 0.28, and approximately 100 microM, respectively. Individual reduction, ligand binding, and NO dioxygenation reactions were examined at 20 degrees C, where V(max) is approximately 94 s(-1). Reduction by NADH occurs in two steps. NADH reduces bound FAD with a rate constant of approximately 15 microM(-1) s(-1), and heme iron is reduced by FADH(2) with a rate constant of 150 s(-1). Dioxygen binds tightly to reduced flavohemoglobin, with association and dissociation rate constants equal to 38 microM(-1) s(-1) and 0.44 s(-1), respectively, and the oxygenated flavohemoglobin dioxygenates NO to form nitrate. NO also binds reversibly to reduced flavohemoglobin in competition with O(2), dissociates slowly, and inhibits NO dioxygenase activity at [NO]/[O(2)] ratios of 1:100. Replacement of the heme pocket B10 tyrosine with phenylalanine increases the O(2) dissociation rate constant approximately 80-fold and reduces NO dioxygenase activity approximately 30-fold, demonstrating the importance of the tyrosine hydroxyl for O(2) affinity and NO scavenging activity. At 37 degrees C, V(max)/K(m)(NO) is 2,400 microM(-1) s(-1), demonstrating that the enzyme is extremely efficient at converting toxic NO into nitrate under physiological conditions.


Assuntos
Escherichia coli/enzimologia , Oxigenases/química , Aminoácidos/metabolismo , Relação Dose-Resposta a Droga , Flavina-Adenina Dinucleotídeo/metabolismo , Cinética , Ligantes , Modelos Biológicos , Mutagênese , NADP/metabolismo , Óxido Nítrico/metabolismo , Oxirredução , Oxigênio/metabolismo , Fatores de Tempo , Tirosina/metabolismo
5.
Proc Natl Acad Sci U S A ; 95(18): 10378-83, 1998 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-9724711

RESUMO

Nitric oxide (NO*) is a toxin, and various life forms appear to have evolved strategies for its detoxification. NO*-resistant mutants of Escherichia coli were isolated that rapidly consumed NO*. An NO*-converting activity was reconstituted in extracts that required NADPH, FAD, and O2, was cyanide-sensitive, and produced NO3-. This nitric oxide dioxygenase (NOD) contained 19 of 20 N-terminal amino acids identical to those of the E. coli flavohemoglobin. Furthermore, NOD activity was produced by the flavohemoglobin gene and was inducible by NO*. Flavohemoglobin/NOD-deficient mutants were also sensitive to growth inhibition by gaseous NO*. The results identify a function for the evolutionarily conserved flavohemoglobins and, moreover, suggest that NO* detoxification may be a more ancient function for the widely distributed hemoglobins, and associated methemoglobin reductases, than dioxygen transport and storage.


Assuntos
Proteínas de Bactérias/metabolismo , Hemeproteínas/metabolismo , Oxigenases/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Sistema Livre de Células , Cromatografia por Troca Iônica , Primers do DNA , Eletroforese em Gel de Poliacrilamida , Escherichia coli/enzimologia , Escherichia coli/genética , Dados de Sequência Molecular , Mutação , Oxigenases/química
6.
Oncogene ; 15(20): 2439-47, 1997 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-9395240

RESUMO

MEK kinases (MEKKs) are serine-threonine kinases that regulate sequential protein phosphorylation pathways involving mitogen-activated protein kinases (MAPKs), including members of the Jun kinase (JNK) family. MEKK1 is a 196 kDa protein that when cleaved by caspase-3-like proteases generates an active COOH-terminal kinase domain. Expression of the MEKK1 kinase domain is sufficient to induce apoptosis. Mutation of MEKK1 to prevent its proteolytic cleavage protects cells from MEKK1-mediated cell death even though the JNK pathway is still activated, indicating that JNK activation is not sufficient to induce cell death. The inducible acute expression at modest levels of the activated MEKK1 kinase domain can be used to potentiate the apoptotic response to low dose ultraviolet irradiation and cisplatin. Similarly, in L929 fibrosarcoma cells inducible acute expression of the kinase domain of MEKK1 markedly increased the cell death response to tumor necrosis factor alpha (TNF alpha). The findings demonstrate that acute expression of an active form of MEKK1 can potentiate the cell death response to external stress stimuli. Manipulation of MEKK1 proteolysis and its regulation of signal pathways involved in apoptosis has significant potential for anticancer therapies when used in combination with therapeutic agents at doses that alone have little or modest effects on cell viability.


Assuntos
Apoptose/fisiologia , Proteínas Quinases JNK Ativadas por Mitógeno , MAP Quinase Quinase Quinase 1 , Quinases de Proteína Quinase Ativadas por Mitógeno , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Tirosina Quinases/fisiologia , Transdução de Sinais , Células 3T3 , Animais , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Linhagem Celular Transformada , Cisplatino/farmacologia , Ativação Enzimática , Indução Enzimática , Fibrossarcoma/patologia , Humanos , Isopropiltiogalactosídeo/farmacologia , Rim , Células L , MAP Quinase Quinase 4 , Camundongos , Fosforilação , Proteínas Quinases/fisiologia , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/biossíntese , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/biossíntese , Proteínas Tirosina Quinases/genética , Proteínas Recombinantes de Fusão/fisiologia , Estresse Fisiológico/genética , Transfecção , Células Tumorais Cultivadas , Raios Ultravioleta
7.
Free Radic Biol Med ; 22(1-2): 73-83, 1997.
Artigo em Inglês | MEDLINE | ID: mdl-8958131

RESUMO

The regulation of cellular cytotoxicity induced by hydrogen peroxide (H2O2) over a wide concentration range was assessed. Three distinct patterns were detected: the highest concentrations (> 10 mM) rapidly induced a necrotic form of death characterized by smeared patterns of DNA digestion and morphological evidence of primary cytoplasm and plasma membrane damage; In contrast, 10 and 5 mM H2O2 induced endonucleosomal DNA digestion concurrently with cytotoxicity and target cell death was associated with morphologic evidence of apoptosis. Apoptosis was inhibited by cycloheximide, emetine, aminobenzamide (ABA), aurintricarboxylic acid, and calcium depletion. The lowest concentrations of H2O2 (0.5 and 0.1 mM)-induced delayed cytotoxicity (at 24 or 48 hr), which was not associated with DNA ladder formation or morphologic evidence of apoptosis, but was inhibited by ABA. Enforced expression of BCL-2 induced resistance to 0.5 and 0.1 mM H2O2 but had no effect on cytotoxicity induced by 5 and 10 mM. Exposure of isolated nuclei to H2O2 in the absence of calcium or magnesium failed to induce endonucleosomal fragmentation. These data indicate that distinct pathways of H2O2-induced cytotoxicity can be distinguished by their different concentration dependences, and that BCL-2 can protect against some forms of H2O2-induced cytotoxicity.


Assuntos
Apoptose/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Peróxido de Hidrogênio/toxicidade , Oxidantes/toxicidade , Animais , Ácido Aurintricarboxílico/farmacologia , Cálcio/metabolismo , Linhagem Celular , Núcleo Celular/efeitos dos fármacos , Cicloeximida/farmacologia , Emetina/farmacologia , Expressão Gênica , Genes bcl-2 , Camundongos , Inibidores da Síntese de Proteínas/farmacologia , ortoaminobenzoatos/farmacologia
9.
Oncogene ; 13(1): 151-9, 1996 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-8700541

RESUMO

The PDGF beta-receptor in which the active-site lysine in the kinase domain has been mutated to arginine (K634R) tacks intrinsic kinase activity. When expressed in HepG2 cells, the kinase-inactive PDGF beta-receptor was tyrosine phosphorylated in response to PDGF-BB. Previously, HepG2 cells were thought to be devoid of PDGF alpha-receptor primarily due to lack of specific antibody which precluded detection of the PDGF alpha-receptor. In fact, these cells express low levels of PDGF alpha-receptor. In HepG2 cells that express the kinase-inactive PDGF beta-receptor, PDGF-BB activates the PDGF alpha-receptors to trans phosphorylate the kinase-inactive PDGF beta-receptor in an intermolecular fashion. As a result, stimulation of HepG2 cells that express the kinase-inactive receptor leads to activation of serine/threonine kinases of the MAP kinase cascade which include RAF-1, MEK-1 and p42 MAP kinase. In contrast, the kinase-inactive receptor does not activate any signaling pathways when it is expressed in PC12 cells which do not express the endogenous PDGF alpha-receptor. Thus, the kinase-inactive K634R PDGF beta-receptor is able to enhance PDGF-BB signaling in HepG2 cells that express the PDGF alpha-receptor.


Assuntos
Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Fator de Crescimento Derivado de Plaquetas/farmacologia , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Receptores do Fator de Crescimento Derivado de Plaquetas/fisiologia , Transdução de Sinais/fisiologia , Células 3T3 , Sequência de Aminoácidos , Animais , Becaplermina , Sítios de Ligação , Carcinoma Hepatocelular/patologia , DNA Complementar/genética , Ativação Enzimática , Humanos , Neoplasias Hepáticas/patologia , Camundongos , Dados de Sequência Molecular , Células PC12/efeitos dos fármacos , Células PC12/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-sis , Ratos , Receptor alfa de Fator de Crescimento Derivado de Plaquetas , Receptor beta de Fator de Crescimento Derivado de Plaquetas , Receptores do Fator de Crescimento Derivado de Plaquetas/efeitos dos fármacos , Receptores do Fator de Crescimento Derivado de Plaquetas/genética , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transfecção , Células Tumorais Cultivadas/efeitos dos fármacos
10.
J Biol Chem ; 271(24): 14560-6, 1996 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-8662985

RESUMO

Treatment of L929 cells with tumor necrosis factor alpha (TNFalpha) activates a programmed cell death pathway resulting in apoptosis. We investigated the intracellular signaling pathways activated in L929 cells by TNFalpha. TNFalpha robustly activates Jun kinase (JNK), a member of the mitogen-activated protein kinase (MAPK) family. In addition, p42(MAPK) is activated, but a 10-fold greater concentration of TNFalpha was required for substantial MAPK activation than was needed for maximal JNK stimulation. Simultaneous treatment of L929 cells with fibroblast growth factor (FGF-2) significantly reduced the apoptotic response to TNFalpha. FGF-2 substantially activated the Raf/MEK/MAPK (where MEK is mitogen-activated protein kinase kinase) pathway but did not affect TNFalpha activation of JNK. These results indicate that although JNK may play an important role in transmitting the TNFalpha signal from the cell surface to the nucleus, activation of the JNK pathway is not sufficient to induce apoptosis. Expression of dominant-negative Asn-17 Ras in L929 cells diminished the FGF-2 stimulation of p42(MAPK) and eliminated the protective effect of FGF-2. Asn-17 Ras expression did not affect JNK activity and had no effect on TNFalpha activation of JNK. Pharmacological inhibition of MEK-1 activity by incubation of cells with the compound PD 098059 blocked p42(MAPK) activation and FGF-2 protection against apoptosis. Interestingly, activated Val-12 Ras expression substantially enhanced TNFalpha-mediated apoptosis in L929 cells, but Val-12 Ras did not constitutively activate MAPK in L929 cells and FGF-2 partially protected Val-12 Ras-expressing cells from TNFalpha-mediated apoptosis. Our data indicate that activation of the MAPK pathway mediates an FGF-2 protective effect against apoptosis and highlights the important role that integration of multiple intracellular signaling pathways plays in the regulation of cell growth and death.


Assuntos
Apoptose/efeitos dos fármacos , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Fator 2 de Crescimento de Fibroblastos/farmacologia , Proteínas Quinases JNK Ativadas por Mitógeno , Fator de Necrose Tumoral alfa/farmacologia , Proteínas ras/metabolismo , Animais , Asparagina , Ativação Enzimática , Cinética , Células L , MAP Quinase Quinase 4 , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno , Mutagênese Sítio-Dirigida , Mutação Puntual , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-raf , Proteínas Recombinantes/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Transfecção , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Valina , Proteínas ras/biossíntese
11.
J Biol Chem ; 271(6): 3229-37, 1996 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-8621725

RESUMO

Mitogen-activated/extracellular response kinase kinase (MEK) kinase (MEKK) is a serine-threonine kinase that regulates sequential protein phosphorylation pathways, leading to the activation of mitogen-activated protein kinases (MAPK), including members of the Jun kinase (JNK)/stress-activated protein kinase (SAPK) family. In Swiss 3T3 and REF52 fibroblasts, activated MEKK induces cell death involving cytoplasmic shrinkage, nuclear condensation, and DNA fragmentation characteristic of apoptosis. Expression of activated MEKK enhanced the apoptotic response to ultraviolet irradiation, indicating that MEKK-regulated pathways sensitize cells to apoptotic stimuli. Inducible expression of activated MEKK stimulated the transactivation of c-Myc and Elk-1. Activated Raf, the serine-threonine protein kinase that activates the ERK members of the MAPK family, stimulated Elk-1 transactivation but not c-Myc; expression of activated Raf does not induce any of the cellular changes associated with MEKK-mediated cell death. Thus, MEKK selectively regulates signal transduction pathways that contribute to the apoptotic response.


Assuntos
Apoptose , Proteínas de Ligação a DNA , MAP Quinase Quinase Quinase 1 , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Células 3T3 , Sequência de Aminoácidos , Animais , Apoptose/efeitos da radiação , Ligação Competitiva , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Linhagem Celular , DNA/análise , Ativação Enzimática , Cinética , Camundongos , Dados de Sequência Molecular , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Recombinantes/metabolismo , Fatores de Transcrição/metabolismo , Ativação Transcricional , Raios Ultravioleta , Proteínas Elk-1 do Domínio ets
12.
Proc Natl Acad Sci U S A ; 92(5): 1614-8, 1995 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-7878028

RESUMO

Tumor necrosis factor alpha (TNF alpha) is bound by two cell surface receptors, CD120a (p55) and CD120b (p75), that belong to the TNF/nerve growth factor receptor family and whose signaling is initiated by receptor multimerization in the plane of the plasma membrane. The initial signaling events activated by receptor crosslinking are unknown, although activation of the mitogen-activated protein kinase (MAPK) cascade occurs shortly after ligand binding to CD120a. In this study, we investigated the upstream kinases that mediate the activation of the 42-kDa MAPK p42mapk/erk2 following crosslinking of CD120a in mouse macrophages. Exposure of mouse macrophages to TNF alpha stimulated a time-dependent increase in the activity of MAPK/ERK kinase (MEK) that temporally preceded peak activation of p42mapk/erk2. MEKs, dual-specificity threonine/tyrosine kinases, act as a convergence point for several signaling pathways including Ras/Raf, MEK kinase (MEKK), and Mos. Incubation of macrophages with TNF alpha was found to transiently stimulate a MEKK that peaked in activity within 30 sec of exposure and progressively declined toward basal levels by 5 min. By contrast, under these conditions, activation of either c-Raf-1 or Raf-B was not detected. These data suggest that the activation of the MAPK cascade in response to TNF alpha is mediated by the sequential activation of a MEKK and a MEK in a c-Raf-1- and Raf-B-independent fashion.


Assuntos
MAP Quinase Quinase Quinase 1 , Macrófagos/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Sequência de Aminoácidos , Animais , Ativação Enzimática , MAP Quinase Quinase 1 , Camundongos , Camundongos Endogâmicos C3H , Dados de Sequência Molecular , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Proteínas Proto-Oncogênicas c-raf , Transdução de Sinais , Fatores de Tempo
13.
Mol Cell Biol ; 14(10): 6522-30, 1994 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-7935374

RESUMO

Growth factor receptor tyrosine kinase regulation of the sequential phosphorylation reactions leading to mitogen-activated protein (MAP) kinase activation in PC12 cells has been investigated. In response to epidermal growth factor, nerve growth factor, and platelet-derived growth factor, B-Raf and Raf-1 are activated, phosphorylate recombinant kinase-inactive MEK-1, and activate wild-type MEK-1. MEK-1 is the dual-specificity protein kinase that selectively phosphorylates MAP kinase on tyrosine and threonine, resulting in MAP kinase activation. B-Raf and Raf-1 are growth factor-regulated Raf family members which regulate MEK-1 and MAP kinase activity in PC12 cells. Protein kinase A activation in response to elevated cyclic AMP (cAMP) levels inhibited B-Raf and Raf-1 stimulation in response to growth factors. Ras.GTP loading in response to epidermal growth factor, nerve growth factor, or platelet-derived growth factor was unaffected by protein kinase A activation. Even though elevated cAMP levels inhibited Raf activation, the growth factor activation of MEK-1 and MAP kinase was unaffected in PC12 cells. The results demonstrate that tyrosine kinase receptor activation of MEK-1 and MAP kinase in PC12 cells is regulated by B-Raf and Raf-1, whose activation is inhibited by protein kinase A, and MEK activators, whose activation is independent of cAMP regulation.


Assuntos
Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais , Sequência de Aminoácidos , Animais , AMP Cíclico/farmacologia , Ativação Enzimática , Substâncias de Crescimento/farmacologia , MAP Quinase Quinase 1 , Dados de Sequência Molecular , Células PC12 , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/genética , Proteínas Proto-Oncogênicas c-raf , Ratos , Proteínas Recombinantes/metabolismo , Transdução de Sinais/efeitos dos fármacos
14.
J Clin Invest ; 93(5): 2134-40, 1994 May.
Artigo em Inglês | MEDLINE | ID: mdl-8182145

RESUMO

Stimulation of T cells with antibodies directed towards the T cell receptor complex results in the activation of mitogen-associated protein kinase (MAPK). Two pathways have been described in other cell types that can lead to MAPK activation. One of these pathways involves the activation of Ras, leading to the activation of Raf-1, and the subsequent activation of MEK (MAPK or ERK kinase). The contribution of this pathway in T cells for anti-CD3 or phorbol myristate acetate (PMA)-mediated MAPK activation was examined. We detected the kinase activities of Raf-1 and MEK towards their substrates (MEK for Raf-1 and MAPK for MEK) in this pathway leading to the activation of MAPK. Stimulation of the T cells with either anti-CD3 antibody or PMA resulted in a rapid activation of both Ras and Raf-1. MEK activity towards kinase-active or -inactive recombinant MAPK also increased upon stimulation. In addition, both MAPK and p90rsk were activated in these cells. We suggest that activation of MAPK and the subsequent activation of ribosomal S6 kinase (p90rsk) occurs by the Ras/Raf-1/MEK cascade in T lymphocytes stimulated by ligation of the T cell receptor complex.


Assuntos
Ativação Linfocitária , Quinases de Proteína Quinase Ativadas por Mitógeno , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Linfócitos T/imunologia , Complexo CD3/imunologia , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Reagentes de Ligações Cruzadas , Humanos , MAP Quinase Quinase 1 , Modelos Biológicos , Proteína Oncogênica p21(ras)/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-raf , Proteínas Quinases S6 Ribossômicas , Acetato de Tetradecanoilforbol/farmacologia
15.
J Cell Biochem ; 54(4): 415-22, 1994 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-8014190

RESUMO

Serpentine receptors coupled to the heterotrimeric G protein, Gi2, are capable of stimulating DNA synthesis in a variety of cell types. A common feature of the Gi2-coupled stimulation of DNA synthesis is the activation of the mitogen-activated protein kinases (MAPKs). The regulation of MAPK activation by the Gi2-coupled thrombin and acetylcholine muscarinic M2 receptors occurs by a sequential activation of a network of protein kinases. The MAPK kinase (MEK) which phosphorylates and activates MAPK is also activated by phosphorylation. MEK is phosphorylated and activated by either Raf or MEK kinase (MEKK). Thus, Raf and MEKK converge at MEK to regulate MAPK. Gi2-coupled receptors are capable of activating MEK and MAPK by Raf-dependent and Raf-independent mechanisms. Pertussis toxin catalyzed ADP-ribosylation of alpha i2 inhibits both the Raf-dependent and -independent pathways activated by Gi2-coupled receptors. The Raf-dependent pathway involves Ras activation, while the Raf-independent activation of MEK and MAPK does not involve Ras. The Raf-independent activation of MEK and MAPK most likely involves the activation of MEKK. The vertebrate MEKK is homologous to the Ste11 and Byr2 protein kinases in the yeast Saccharomyces cerevisiae and Schizosaccharomyces pombe, respectively. The yeast Ste11 and Byr2 protein kinases are involved in signal transduction cascades initiated by pheromone receptors having a 7 membrane spanning serpentine structure coupled to G proteins. MEKK appears to be conserved in the regulation of G protein-coupled signal pathways in yeast and vertebrates. Raf represents a divergence in vertebrates from the yeast pheromone-responsive protein kinase system.(ABSTRACT TRUNCATED AT 250 WORDS)


Assuntos
DNA/biossíntese , Proteínas de Ligação ao GTP/fisiologia , Mitógenos , Transdução de Sinais/fisiologia , Sequência de Aminoácidos , Animais , Proteína Quinase 1 Ativada por Mitógeno , Quinases de Proteína Quinase Ativadas por Mitógeno , Dados de Sequência Molecular , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo
16.
J Biol Chem ; 269(10): 7538-43, 1994 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-8125975

RESUMO

The mechanism by which mitogen-activated protein kinase (MAPK) is activated in human B cells following cross-linking of the antigen receptor was investigated. Following anti-IgM antibody and phorbol 12-myristate 13-acetate (PMA) stimulation, we demonstrate the activation of Ras, Raf-1, and MAPK/ERK kinase (MEK), all of which are thought to participate in an important signaling cascade that leads to MAPK activation. We detected the kinase activities of Raf-1 and MEK toward purified recombinant substrates for each in this pathway (MEK for Raf-1 and MAPK for MEK). Following stimulation with either anti-IgM or PMA, Ras activation was observed, and the ability of Raf-1 to phosphorylate recombinant kinase-inactive MEK was increased by approximately 10-fold. Similarly, MEK activity toward kinase-active or -inactive recombinant MAPK also increased upon anti-IgM or PMA treatment. Furthermore, the activation of both MAPK and p90rsk was demonstrated under identical conditions in the B cells. We conclude that activation of B lymphocytes through the antigen receptor stimulates distinct members of the Ras/Raf-1/MEK cascade and this mechanism is likely to be responsible for MAPK and p90rsk activation in these cells.


Assuntos
Linfócitos B/metabolismo , Imunoglobulina M/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Receptores de Antígenos de Linfócitos B/metabolismo , Linfócitos B/enzimologia , Transformação Celular Viral , Reagentes de Ligações Cruzadas , Ativação Enzimática , Humanos , Ativação Linfocitária , MAP Quinase Quinase 1 , Proteína Quinase 1 Ativada por Mitógeno , Proteína Oncogênica p21(ras)/metabolismo , Proteínas Proto-Oncogênicas/efeitos dos fármacos , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-raf , Proteínas Quinases S6 Ribossômicas , Acetato de Tetradecanoilforbol/farmacologia , Células Tumorais Cultivadas
17.
Mol Biol Cell ; 5(2): 193-201, 1994 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-8019005

RESUMO

MEK-1 is a dual threonine and tyrosine recognition kinase that phosphorylates and activates mitogen-activated protein kinase (MAPK). MEK-1 is in turn activated by phosphorylation. Raf and MAPK/extracellular signal-regulated kinase kinase (MEKK) independently phosphorylate and activate MEK-1. Recombinant MEK-1 is also capable of autoactivation. Purified recombinant wild type MEK-1 and a mutant kinase inactive MEK-1 were used as substrates for MEKK, Raf, and autophosphorylation. MEK-1 phosphorylation catalyzed by Raf, MEKK, or autophosphorylation resulted in activation of MEK-1 kinase activity measured by phosphorylation of a mutant kinase inactive MAPK. Phosphoamino acid analysis and peptide mapping identified similar MEK-1 tryptic phosphopeptides after phosphorylation by MEK kinase, Raf, or MEK-1 autophosphorylation. MEK-1 is phosphorylated by MAPK at sites different from that for Raf and MEKK. Phosphorylation of MEK-1 by MAPK does not affect MEK-1 kinase activity. Several phosphorylation sites present in MEK-1 immunoprecipitated from 32P-labeled cells after stimulation with epidermal growth factor were common to the in vitro phosphorylated enzyme. The major site of MAPK phosphorylation in MEK-1 is threonine 292. Mutation of threonine 292 to alanine eliminates 90% of MAPK catalyzed phosphorylation of MEK-1 but does not influence MEK-1 activity. The results demonstrate that MEKK and Raf regulate MEK-1 activity by phosphorylation of common residues and thus, two independent protein kinases converge at MEK-1 to regulate the activity of MAPK.


Assuntos
MAP Quinase Quinase Quinase 1 , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Animais , Linhagem Celular , Ativação Enzimática , MAP Quinase Quinase 1 , Camundongos , Proteína Quinase 1 Ativada por Mitógeno , Quinases de Proteína Quinase Ativadas por Mitógeno , Mutagênese Sítio-Dirigida , Fosfopeptídeos/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-raf , Transdução de Sinais , Escatol/análogos & derivados , Tripsina
18.
Methods Enzymol ; 238: 258-70, 1994.
Artigo em Inglês | MEDLINE | ID: mdl-7799792

Assuntos
Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Substâncias de Crescimento/farmacologia , Quinases de Proteína Quinase Ativadas por Mitógeno , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Animais , Autorradiografia/métodos , Sequência de Bases , Becaplermina , Proteínas Quinases Dependentes de Cálcio-Calmodulina/análise , Proteínas Quinases Dependentes de Cálcio-Calmodulina/isolamento & purificação , Divisão Celular/efeitos dos fármacos , Clonagem Molecular/métodos , Primers do DNA , Ativação Enzimática , Fator de Crescimento Epidérmico/farmacologia , Homeostase , MAP Quinase Quinase 1 , Modelos Biológicos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Células PC12 , Fragmentos de Peptídeos/farmacologia , Radioisótopos de Fósforo , Fator de Crescimento Derivado de Plaquetas/farmacologia , Reação em Cadeia da Polimerase/métodos , Proteínas Serina-Treonina Quinases/análise , Proteínas Serina-Treonina Quinases/isolamento & purificação , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/análise , Proteínas Tirosina Quinases/isolamento & purificação , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-sis , Ratos , Receptores do Fator de Crescimento Derivado de Plaquetas/efeitos dos fármacos , Receptores do Fator de Crescimento Derivado de Plaquetas/fisiologia , Proteínas Recombinantes/análise , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia
19.
J Biol Chem ; 268(34): 25940-7, 1993 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-8245027

RESUMO

The immunoglobulin kappa light chain produced by the CH12 lymphoma is unusual because it is not secreted when expressed in the absence of a heavy chain. Instead, it undergoes rapid intracellular degradation. This degradation is selective, as another light chain expressed in the same cell is not degraded. It is also a property of the CH12 kappa chain itself, since it is degraded rapidly when expressed either in another myeloma cell or in COS-1 fibroblasts. When provided a heavy chain, this kappa chain assembles into IgM and is then protected from proteolysis. The degradation of kappa requires ATP, is sensitive to reduced temperature and to the thiol reagent diamide. Of all the proteolytic inhibitors tested, 3,4-dichloroisocoumarin, L-1-tosylamido-2-phenylethyl chloromethyl ketone, and to a lesser extent 1-chloro-3-tosylamido-7-amino-2-heptanone, inhibit kappa degradation, suggesting the involvement of a serine protease. The degradation of kappa does not require transport to the Golgi complex, nor is it sensitive to a variety of lysosomotropic agents. Both immunofluorescence and the observed association with the endoplasmic reticulum (ER) stress proteins GRP78/BiP and GRP94 indicate that the kappa chain is localized mostly in the ER. When a point mutation which blocks transport to the Golgi complex is introduced into this kappa chain, the association with the stress proteins is enhanced but the rate of degradation is not significantly decreased. We conclude that the CH12 kappa chain is a particularly good substrate for an ER degradation machinery, and that its sensitivity to the protease(s) is governed by its state of assembly. This ER degradation provides a possible quality control mechanism during the differentiation of B lymphocytes.


Assuntos
Retículo Endoplasmático/enzimologia , Proteínas de Choque Térmico HSP70 , Cadeias kappa de Imunoglobulina/metabolismo , Linfoma/imunologia , Chaperonas Moleculares , Inibidores de Proteases/farmacologia , Serina Endopeptidases/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Antimicina A/farmacologia , Proteínas de Transporte/análise , Linhagem Celular , Chaperona BiP do Retículo Endoplasmático , Imunofluorescência , Complexo de Golgi/metabolismo , Proteínas de Choque Térmico/análise , Cadeias kappa de Imunoglobulina/análise , Cadeias kappa de Imunoglobulina/genética , Cinética , Proteínas de Membrana/análise , Camundongos , Camundongos Endogâmicos , Mieloma Múltiplo , Mutação Puntual , Frações Subcelulares/enzimologia , Transfecção , Células Tumorais Cultivadas
20.
J Biol Chem ; 268(24): 17896-901, 1993 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-8394352

RESUMO

Mitogen-activated protein kinases (MAPKs) are rapidly phosphorylated and activated in response to a variety of extracellular stimuli in many different cell types. The kinases that activate MAPK, the MAPK/ERK Kinases (MEKs), are also activated by phosphorylation. We have studied the influence of specific oncogenes on the regulation of MEK activity in NIH3T3 and Rat1a fibroblasts. We show that a similar MEK activity phosphorylates and activates MAPK in both growth factor-stimulated (epidermal growth factor and thrombin) and oncogene (gip2, v-src, and v-raf)-transfected cells. Gip2 and v-Src activated MEK-1 in transfected Rat 1a cells, whereas v-Raf activated MEK-1 in transfected NIH3T3 cells. These cell-selective differences in MEK activation parallel constitutive MAPK activation in these cell lines. Stable expression of the v-ras oncogene resulted in little constitutive MEK activation in either cell line, even though both were highly transformed. The growth factor and oncoprotein regulated MEK activity co-fractionated by Mono S chromatography with the 45-kDa MEK-1 protein. We further demonstrate in NIH3T3 and Rat 1a cells that Raf-1 is activated, as measured by its ability to phosphorylate MEK-1, in response to epidermal growth factor but not thrombin. Thus, the regulatory network of protein kinases that activate MAPK converges at MEK but diverges with the kinases that phosphorylate and activate MEK.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Expressão Gênica , Proteínas Oncogênicas/metabolismo , Proteínas Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Proteínas/metabolismo , Células 3T3 , Sequência de Aminoácidos , Animais , Sequência de Bases , Proteínas Quinases Dependentes de Cálcio-Calmodulina , Linhagem Celular , Ativação Enzimática , Fator de Crescimento Epidérmico/farmacologia , Camundongos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Oligodesoxirribonucleotídeos , Proteínas Oncogênicas/biossíntese , Oncogenes , Ratos , Transdução de Sinais , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA