Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
ACS Omega ; 8(39): 35738-35745, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37810691

RESUMO

An improved synthesis was developed for CDTP-32476, a potent slow-onset dopamine reuptake blocker that may have utility as a treatment for cocaine abuse. The enantiomers of the compound were separated by fractional crystallization with N-acetylleucine enantiomers. An X-ray crystal structure was obtained of the RR enantiomer paired with N-acetyl-d-leucine. Chiral chromatography showed that the resolved enantiomers were pure with little contamination by the other enantiomer. The enantiomers were tested for their ability to block the reuptake of monoamines at their respective transporters and to stimulate locomotor activity in mice. Both enantiomers potently blocked the reuptake of dopamine and stimulated locomotor activity in mice. The RR enantiomer that corresponds to the active RR enantiomer of methylphenidate was slightly more potent at the dopamine reuptake site. The RR enantiomer also was found to be about twice as selective for the dopamine transporter relative to the norepinephrine transporter, which may have clinical implications. A method for designing slow-onset stimulants is proposed since there is increasing evidence that such activity is an important factor in stimulants that may have limited abuse potential.

2.
Int J Neuropsychopharmacol ; 26(12): 828-839, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37864842

RESUMO

BACKGROUND: There is a strong link between chronic stress and vulnerability to drug abuse and addiction. Corticotropin releasing factor (CRF) is central to the stress response that contributes to continuation and relapse to heroin abuse. Chronic heroin exposure can exacerbate CRF production, leading to dysregulation of the midbrain CRF-dopamine-glutamate interaction. METHODS: Here we investigated the role of midbrain CRF1 receptors in heroin self-administration and assessed neuroplasticity in CRF1 receptor expression in key opioid addiction brain regions. RESULTS: Infusions of antalarmin (a CRF1 receptor antagonist) into the ventral tegmental area (VTA) dose dependently reduced heroin self-administration in rats but had no impact on food reinforcement or locomotor activity in rats. Using RNAscope in situ hybridization, we found that heroin, but not saline, self-administration upregulated CRF1 receptor mRNA in the VTA, particularly on dopamine neurons. AMPA GluR1 and dopamine reuptake transporter mRNA in VTA neurons were not affected by heroin. The western-blot assay showed that CRF1 receptors were upregulated in the VTA and nucleus accumbens. No significant changes in CRF1 protein expression were detected in the prefrontal cortex, insula, dorsal hippocampus, and substantia nigra. In addition, we found that 15 days of environmental enrichment implemented after heroin self-administration does not reverse upregulation of VTA CRF1 receptor mRNA but it downregulates dopamine transporter mRNA. CONCLUSIONS: Overall, these data suggest that heroin self-administration requires stimulation of VTA CRF1 receptors and upregulates their expression in brain regions involved in reinforcement. Such long-lasting neuroadaptations may contribute to continuation of drug use and relapse due to stress exposure and are not easily reversed by EE exposure.


Assuntos
Hormônio Liberador da Corticotropina , Heroína , Ratos , Animais , Hormônio Liberador da Corticotropina/metabolismo , Heroína/farmacologia , Heroína/metabolismo , Dopamina/metabolismo , Área Tegmentar Ventral , Autoadministração , Recidiva , RNA Mensageiro/metabolismo
3.
Sci Adv ; 8(35): eabo1440, 2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36054363

RESUMO

Physical exercise is rewarding and protective against drug abuse and addiction. However, the neural mechanisms underlying these actions remain unclear. Here, we report that long-term wheel-running produced a more robust increase in c-fos expression in the red nucleus (RN) than in other brain regions. Anatomic and functional assays demonstrated that most RN magnocellular portion (RNm) neurons are glutamatergic. Wheel-running activates a subset of RNm glutamate neurons that project to ventral tegmental area (VTA) dopamine neurons. Optogenetic stimulation of this pathway was rewarding, as assessed by intracranial self-stimulation and conditioned place preference, whereas optical inhibition blocked wheel-running behavior. Running wheel access decreased cocaine self-administration and cocaine seeking during extinction. Last, optogenetic stimulation of the RNm-to-VTA glutamate pathway inhibited responding to cocaine. Together, these findings indicate that physical exercise activates a specific RNm-to-VTA glutamatergic pathway, producing exercise reward and reducing cocaine intake.

4.
Transl Psychiatry ; 12(1): 286, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35851573

RESUMO

Cannabinoid CB1 receptors (CB1Rs) have been major targets in medication development for the treatment of substance use disorders. However, clinical trials with rimonabant, a CB1R antagonist/inverse agonist, failed due to severe side effects. Here, we evaluated the therapeutic potential of PIMSR, a neutral CB1R antagonist lacking an inverse agonist profile, against cocaine's behavioral effects in experimental animals. We found that systemic administration of PIMSR dose-dependently inhibited cocaine self-administration under fixed-ratio (FR5), but not FR1, reinforcement, shifted the cocaine self-administration dose-response curve downward, decreased incentive motivation to seek cocaine under progressive-ratio reinforcement, and reduced cue-induced reinstatement of cocaine seeking. PIMSR also inhibited oral sucrose self-administration. Importantly, PIMSR alone is neither rewarding nor aversive as assessed by place conditioning. We then used intracranial self-stimulation (ICSS) to explore the possible involvement of the mesolimbic dopamine system in PIMSR's action. We found that PIMSR dose-dependently attenuated cocaine-enhanced ICSS maintained by electrical stimulation of the medial forebrain bundle in rats. PIMSR itself failed to alter electrical ICSS, but dose-dependently inhibited ICSS maintained by optical stimulation of midbrain dopamine neurons in transgenic DAT-Cre mice, suggesting the involvement of dopamine-dependent mechanisms. Lastly, we examined the CB1R mechanisms underlying PIMSR's action. We found that PIMSR pretreatment attenuated Δ9-tetrahydrocannabinol (Δ9-THC)- or ACEA (a selective CB1R agonist)-induced reduction in optical ICSS. Together, our findings suggest that the neutral CB1R antagonist PIMSR deserves further research as a promising pharmacotherapeutic for cocaine use disorder.


Assuntos
Cocaína , Transtornos Relacionados ao Uso de Substâncias , Animais , Comportamento Animal , Cocaína/farmacologia , Condicionamento Operante/fisiologia , Dopamina , Relação Dose-Resposta a Droga , Dronabinol/farmacologia , Camundongos , Ratos , Receptor CB1 de Canabinoide , Autoadministração
5.
Mol Psychiatry ; 27(4): 2171-2181, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35064236

RESUMO

Ghrelin, an orexigenic hormone, has emerged as a critical biological substrate implicated in drug reward. However, the response of the ghrelin system to opioid-motivated behaviors and the role of ghrelin in oxycodone self-administration remain to be studied. Here, we investigated the reciprocal interactions between the endogenous ghrelin system and oxycodone self-administration behaviors in rats and the role of the ghrelin system in brain stimulation reward (BSR) driven by optogenetic stimulation of midbrain reward circuits in mice. Oxycodone self-administration significantly elevated plasma ghrelin, des-acyl ghrelin and growth hormone and showed no effect on plasma LEAP2, a newly identified endogenous ghrelin receptor (GHS-R1a) antagonist. Oxycodone self-administration produced significant decreases in plasma gastric inhibitory polypeptide and insulin. Acquisition of oxycodone self-administration significantly upregulated GHS-R1a mRNA levels in dopamine neurons in the ventral tegmental area (VTA), a brain region critical in drug reward. Pretreatment with JMV2959, a selective GHS-R1a antagonist, dose-dependently reduced oxycodone self-administration and decreased the breakpoint for oxycodone under a progressive ratio reinforcement in Long-Evans rats. The inhibitory effects of JMV2959 on oxycodone self-administration is selectively mediated by GHS-R1a as JMV2959 showed a similar effect in Wistar wildtype but not in GHS-R knockout rats. JMV2959 pretreatment significantly inhibited BSR driven by selective stimulation of VTA dopamine neurons, but not by stimulation of striatal GABA neurons projecting to the VTA in mice. These findings suggest that elevation of ghrelin signaling by oxycodone or oxycodone-associated stimuli is a causal process by which oxycodone motivates oxycodone drug-taking and targeting the ghrelin system may be a viable treatment approach for opioid use disorders.


Assuntos
Grelina , Receptores de Grelina , Animais , Animais Geneticamente Modificados , Grelina/farmacologia , Camundongos , Oxicodona , Ratos , Ratos Long-Evans , Ratos Wistar
6.
J Neurosci ; 42(11): 2327-2343, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35091501

RESUMO

It is well established that glutamate plays an important role in drug-induced and cue-induced reinstatement of drug seeking. However, the role of glutamate in drug reward is unclear. In this study, we systemically evaluated the effects of multiple glutamate transporter (GLT) inhibitors on extracellular glutamate and dopamine (DA) in the nucleus accumbens (NAc), intravenous cocaine self-administration, intracranial brain-stimulation reward (BSR), and reinstatement of cocaine seeking in male and female rats. Among the five GLT inhibitors we tested, TFB-TBOA was the most potent. Microinjections of TFB-TBOA into the NAc, but not the ventral tegmental area (VTA), or dorsal striatum (DS), dose-dependently inhibited cocaine self-administration under fixed-ratio and progressive-ratio (PR) reinforcement schedules, shifted the cocaine dose-response curve downward, and inhibited intracranial BSR. Selective downregulation of astrocytic GLT-1 expression in the NAc by GLT-1 antisense oligonucleotides also inhibited cocaine self-administration. The reduction in cocaine self-administration following TFB-TBOA administration was NMDA GluN2B receptor dependent, and rats self-administering cocaine showed upregulation of GluN2B expression in NAc DA- and cAMP-regulated phosphoprotein 32 (DARPP-32)-positive medium-spiny neurons (MSNs). In contrast, TFB-TBOA, when locally administered into the NAc, VTA, or ventral pallidum (VP), dose-dependently reinstated cocaine-seeking behavior. Intra-NAc TFB-TBOA-evoked drug-seeking was long-lasting and NMDA/AMPA receptor dependent. These findings, for the first time, indicate that glutamate in the NAc negatively regulates cocaine's rewarding effects, while an excess of glutamate in multiple brain regions can trigger reinstatement of drug-seeking behavior.SIGNIFICANCE STATEMENT It is well known that glutamate plays an important role in relapse to drug seeking. However, the role of glutamate in drug reward is less clear. Here, we report that TFB-TBOA, a highly potent glutamate transporter (GLT) inhibitor, dose-dependently elevates extracellular glutamate and inhibits cocaine self-administration and brain-stimulation reward (BSR), when administered locally into the nucleus accumbens (NAc), but not other brain regions. Mechanistic assays indicate that cocaine self-administration upregulates NMDA-GluN2B receptor subtype expression in striatal dopaminoceptive neurons and activation of GluN2B by TFB-TBOA-enhanced glutamate inhibits cocaine self-administration. TFB-TBOA also reinstates cocaine-seeking behavior when administered into the NAc, ventral tegmental area (VTA), and ventral pallidum (VP). These findings demonstrate that glutamate differentially regulates cocaine reward versus relapse, reducing cocaine reward, while potentiating relapse to cocaine seeking.


Assuntos
Transtornos Relacionados ao Uso de Cocaína , Cocaína , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Animais , Astrócitos/metabolismo , Cocaína/farmacologia , Transtornos Relacionados ao Uso de Cocaína/metabolismo , Feminino , Ácido Glutâmico/metabolismo , Masculino , N-Metilaspartato/farmacologia , Núcleo Accumbens , Ratos , Receptores de N-Metil-D-Aspartato , Autoadministração
7.
Neuropsychopharmacology ; 47(8): 1449-1460, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34923576

RESUMO

Cocaine addiction is a significant medical and public concern. Despite decades of research effort, development of pharmacotherapy for cocaine use disorder remains largely unsuccessful. This may be partially due to insufficient understanding of the complex biological mechanisms involved in the pathophysiology of this disorder. In the present study, we show that: (1) elevation of ghrelin by cocaine plays a critical role in maintenance of cocaine self-administration and cocaine-seeking motivated by cocaine-conditioned stimuli; (2) acquisition of cocaine-taking behavior is associated with the acquisition of stimulatory effects of cocaine by cocaine-conditioned stimuli on ghrelin secretion, and with an upregulation of ghrelin receptor mRNA levels in the ventral tegmental area (VTA); (3) blockade of ghrelin signaling by pretreatment with JMV2959, a selective ghrelin receptor antagonist, dose-dependently inhibits reinstatement of cocaine-seeking triggered by either cocaine or yohimbine in behaviorally extinguished animals with a history of cocaine self-administration; (4) JMV2959 pretreatment also inhibits brain stimulation reward (BSR) and cocaine-potentiated BSR maintained by optogenetic stimulation of VTA dopamine neurons in DAT-Cre mice; (5) blockade of peripheral adrenergic ß1 receptors by atenolol potently attenuates the elevation in circulating ghrelin induced by cocaine and inhibits cocaine self-administration and cocaine reinstatement triggered by cocaine. These findings demonstrate that the endogenous ghrelin system plays an important role in cocaine-related addictive behaviors and suggest that manipulating and targeting this system may be viable for mitigating cocaine use disorder.


Assuntos
Transtornos Relacionados ao Uso de Cocaína , Cocaína , Adrenérgicos/farmacologia , Adrenérgicos/uso terapêutico , Animais , Cocaína/farmacologia , Transtornos Relacionados ao Uso de Cocaína/tratamento farmacológico , Grelina , Camundongos , Ratos , Ratos Sprague-Dawley , Receptores de Grelina/uso terapêutico , Autoadministração , Área Tegmentar Ventral
8.
Front Pharmacol ; 12: 722476, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34566647

RESUMO

Recent research indicates that brain cannabinoid CB2 receptors are involved in drug reward and addiction. However, it is unclear whether ß-caryophyllene (BCP), a natural product with a CB2 receptor agonist profile, has therapeutic effects on methamphetamine (METH) abuse and dependence. In this study, we used animal models of self-administration, electrical brain-stimulation reward (BSR) and in vivo microdialysis to explore the effects of BCP on METH-taking and METH-seeking behavior. We found that systemic administration of BCP dose-dependently inhibited METH self-administration under both fixed-ratio and progressive-ratio reinforcement schedules in rats, indicating that BCP reduces METH reward, METH intake, and incentive motivation to seek and take METH. The attenuating effects of BCP were partially blocked by AM 630, a selective CB2 receptor antagonist. Genetic deletion of CB2 receptors in CB2-knockout (CB2-KO) mice also blocked low dose BCP-induced reduction in METH self-administration, suggesting possible involvement of a CB2 receptor mechanism. However, at high doses, BCP produced a reduction in METH self-administration in CB2-KO mice in a manner similar as in WT mice, suggesting that non-CB2 receptor mechanisms underlie high dose BCP-produced effects. In addition, BCP dose-dependently attenuated METH-enhanced electrical BSR and inhibited METH-primed and cue-induced reinstatement of drug-seeking in rats. In vivo microdialysis assays indicated that BCP alone did not produce a significant reduction in extracellular dopamine (DA) in the nucleus accumbens (NAc), while BCP pretreatment significantly reduced METH-induced increases in extracellular NAc DA in a dose-dependent manner, suggesting a DA-dependent mechanism involved in BCP action. Together, the present findings suggest that BCP might be a promising therapeutic candidate for the treatment of METH use disorder.

9.
Neuropharmacology ; 189: 108538, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33789118

RESUMO

Cannabinoids produce a number of central nervous system effects via the CB2 receptor (CB2R), including analgesia, antianxiety, anti-reward, hypoactivity and attenuation of opioid-induced respiratory depression. However, the cellular distributions of the CB2Rs in the brain remain unclear. We have reported that CB2Rs are expressed in midbrain dopamine (DA) neurons and functionally regulate DA-mediated behavior(s). Unexpectedly, high densities of CB2-like signaling were also found in a neighboring motor structure - the red nucleus (RN) of the midbrain. In the present study, we systematically explored CB2R expression and function in the RN. Immunohistochemistry and in situ hybridization assays showed high densities of CB2R-immunostaining and mRNA signal in RN magnocellular glutamate neurons in wildtype and CB1-knockout, but not CB2-knockout, mice. Ex vivo electrophysiological recordings in midbrain slices demonstrated that CB2R activation by JWH133 dose-dependently inhibited firing rates of RN magnocellular neurons in wildtype, but not CB2-knockout, mice, while having no effect on RN GABA neurons in transgenic GAD67-GFP reporter mice, suggesting CB2-mediated effects on glutamatergic neurons. In addition, microinjection of JWH133 into the RN produced robust ipsilateral rotations in wildtype, but not CB2-knockout mice, which was blocked by pretreatment with either a CB2 or DA D1 or D2 receptor antagonist, suggesting a DA-dependent effect. Finally, fluorescent tract tracing revealed glutamatergic projections from the RN to multiple brain areas including the ventral tegmental area, thalamus, and cerebellum. These findings suggest that CB2Rs in RN glutamate neurons functionally modulate motor activity, and therefore, constitute a new target in cannabis-based medication development for motor disorders.


Assuntos
Ácido Glutâmico/metabolismo , Atividade Motora/fisiologia , Neurônios/metabolismo , Receptor CB2 de Canabinoide/biossíntese , Núcleo Rubro/metabolismo , Animais , Canabinoides/administração & dosagem , Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Microinjeções , Atividade Motora/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Receptor CB2 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/genética , Núcleo Rubro/diagnóstico por imagem
10.
Eur Neuropsychopharmacol ; 43: 38-51, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33334652

RESUMO

Cannabinoids produce both rewarding and aversive effects in humans and experimental animals. However, the mechanisms underlying these conflicting findings are unclear. Here we examined the potential involvement of CB1 and CB2 receptors in cannabinoid action using transgenic CB1-knockout (CB1-KO) and CB2-knockout (CB2-KO) mice. We found that Δ9-tetrahydrocannabinol (Δ9-THC) induced conditioned place preference at a low dose (1 mg/kg) in WT mice that was attenuated by deletion of the CB1 receptor. At 5 mg/kg, no subjective effects of Δ9-THC were detected in WT mice, but CB1-KO mice exhibited a trend towards place aversion and CB2-KO mice developed significant place preferences. This data suggests that activation of the CB1 receptor is rewarding, while CB2R activation is aversive. We then examined the nucleus accumbens (NAc) dopamine (DA) response to Δ9-THC using in vivo microdialysis. Unexpectedly, Δ9-THC produced a dose-dependent decrease in extracellular DA in WT mice, that was potentiated in CB1-KO mice. However, in CB2-KO mice Δ9-THC produced a dose-dependent increase in extracellular DA, suggesting that activation of the CB2R inhibits DA release in the NAc. In contrast, Δ9-THC, when administered systemically or locally into the NAc, failed to alter extracellular DA in rats. Lastly, we examined the locomotor response to Δ9-THC. Both CB1 and CB2 receptor mechanisms were shown to underlie Δ9-THC-induced hypolocomotion. These findings indicate that Δ9-THC's variable subjective effects reflect differential activation of cannabinoid receptors. Specifically, the opposing actions of CB1 and CB2 receptors regulate cannabis reward and aversion, with CB2-mediated effects predominant in mice.


Assuntos
Canabinoides , Cannabis , Animais , Dronabinol/farmacologia , Camundongos , Camundongos Knockout , Ratos , Receptor CB1 de Canabinoide/genética , Receptor CB2 de Canabinoide/genética , Receptores de Canabinoides , Recompensa
11.
Psychopharmacology (Berl) ; 237(7): 1989-2005, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32388619

RESUMO

RATIONALE: Abuse of the psychostimulant methamphetamine (METH) can cause long-lasting damage to brain monoaminergic systems and is associated with profound mental health problems for users, including lasting cognitive impairments. Animal models of METH exposure have been useful in dissecting the molecular effects of the drug on cognition, but many studies use acute, non-contingent "binge" administrations of METH which do not adequately approximate human METH use. Long-term METH exposure via long-access (LgA) self-administration paradigms has been proposed to more closely reflect human use and induce cognitive impairments. OBJECTIVE: To better understand the role of contingency and patterns of exposure in METH-induced cognitive impairments, we analyzed behavioral and neurochemical outcomes in adult male rats, comparing non-contingent "binge" METH administration with contingent (LgA) METH self-administration and non-contingent yoked partners. RESULTS: Binge METH (40 mg/kg, i.p., over 1 day) dramatically altered striatal and hippocampal dopamine, DOPAC, 5-HT, 5-HIAA, BDNF, and TrkB 75 days after drug exposure. In contrast, 6-h LgA METH self-administration (cumulative 24.8-48.9 mg METH, i.v., over 16 days) altered hippocampal BDNF in both contingent and yoked animals but reduced striatal 5-HIAA in only contingent animals. Neurochemical alterations following binge METH administration were not accompanied by cognitive deficits in Morris water maze, novel object recognition, or Y-maze tests. However, contingent LgA METH self-administration resulted in impaired spatial memory in the water maze. CONCLUSIONS: Overall, substantial differences in neurochemical markers between METH exposure and self-administration paradigms did not consistently translate to deficits in cognitive tasks, highlighting the complexity of correlating METH-induced neurochemical changes with cognitive outcomes.


Assuntos
Estimulantes do Sistema Nervoso Central/administração & dosagem , Cognição/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Aprendizagem em Labirinto/efeitos dos fármacos , Metanfetamina/administração & dosagem , Ácido 3,4-Di-Hidroxifenilacético/metabolismo , Animais , Cognição/fisiologia , Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Ácido Hidroxi-Indolacético/metabolismo , Masculino , Aprendizagem em Labirinto/fisiologia , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/metabolismo , Ratos , Ratos Wistar , Autoadministração/psicologia
12.
Br J Pharmacol ; 177(8): 1865-1880, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31877572

RESUMO

BACKGROUND AND PURPOSE: Cannabis or cannabinoids produce characteristic tetrad effects-analgesia, hypothermia, catalepsy and suppressed locomotion, which are believed to be mediated by the activation of cannabinoid CB1 receptors. Given recent findings of CB2 and GPR55 receptors in the brain, we examined whether these receptors are also involved in cannabinoid action. EXPERIMENTAL APPROACH: We compared Δ9 -tetrahydrocannabinol (Δ9 -THC)-, WIN55212-2-, or XLR11-induced tetrad effects between wild-type (WT) and each genotype of CB1 -, CB2 - or GPR55-knockout (KO) mice and then observed the effects of antagonists of these receptors on these tetrad effects in WT mice. KEY RESULTS: Systemic administration of Δ9 -THC, WIN55212-2 or XLR11 produced dose-dependent tetrad effects in WT mice. Genetic deletion or pharmacological blockade of CB1 receptors abolished the tetrad effects produced by all three cannabinoids. Unexpectedly, genetic deletion of CB2 receptor abolished analgesia and catalepsy produced by Δ9 -THC or WIN55212-2, but not by XLR11. Microinjections of Δ9 -THC into the lateral ventricles also produced tetrad effects in WT, but not in CB1 -KO mice. CB2 -KO mice displayed a reduction in intraventricular Δ9 -THC-induced analgesia and catalepsy. In contrast to CB1 and CB2 receptors, genetic deletion of GPR55 receptors caused enhanced responses to Δ9 -THC or WIN55212-2. Antagonisim of CB1 , CB2 or GPR55 receptors produced alterations similar to those observed in each genotype mouse line. CONCLUSIONS AND IMPLICATIONS: These findings suggest that in addition to CB1 , both CB2 and GPR55 receptors are also involved in some pharmacological effects produced by cannabinoids. CB1 /CB2 , in contrast to GPR55, receptors appears to play opposite roles in cannabinoid action.


Assuntos
Canabinoides , Cannabis , Animais , Canabinoides/farmacologia , Dronabinol/farmacologia , Camundongos , Camundongos Knockout , Receptor CB1 de Canabinoide/genética , Receptor CB2 de Canabinoide/genética , Receptores de Canabinoides/genética
13.
Br J Pharmacol ; 176(24): 4773-4784, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31454413

RESUMO

BACKGROUND AND PURPOSE: Both types of cannabinoid receptors-CB1 and CB2 -regulate brain functions relating to addictive drug-induced reward and relapse. CB1 receptor antagonists and CB2 receptor agonists have anti-addiction efficacy, in animal models, against a broad range of addictive drugs. Δ9 -Tetrahydrocannabivarin (Δ9 -THCV)-a cannabis constituent-acts as a CB1 antagonist and a CB2 agonist. Δ8 -Tetrahydrocannabivarin (Δ8 -THCV) is a Δ9 -THCV analogue with similar combined CB1 antagonist/CB2 agonist properties. EXPERIMENTAL APPROACH: We tested Δ8 -THCV in seven different rodent models relevant to nicotine dependence-nicotine self-administration, cue-triggered nicotine-seeking behaviour following forced abstinence, nicotine-triggered reinstatement of nicotine-seeking behaviour, acquisition of nicotine-induced conditioned place preference, anxiety-like behaviour induced by nicotine withdrawal, somatic withdrawal signs induced by nicotine withdrawal, and hyperalgesia induced by nicotine withdrawal. KEY RESULTS: Δ8 -THCV significantly attenuated intravenous nicotine self-administration and both cue-induced and nicotine-induced relapse to nicotine-seeking behaviour in rats. Δ8 -THCV also significantly attenuated nicotine-induced conditioned place preference and nicotine withdrawal in mice. CONCLUSIONS AND IMPLICATIONS: We conclude that Δ8 -THCV may have therapeutic potential for the treatment of nicotine dependence. We also suggest that tetrahydrocannabivarins should be tested for possible anti-addiction efficacy in a broader range of preclinical animal models, against other addictive drugs, and eventually in humans.


Assuntos
Comportamento de Procura de Droga/efeitos dos fármacos , Hiperalgesia/prevenção & controle , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB2 de Canabinoide/agonistas , Agentes de Cessação do Hábito de Fumar/farmacologia , Síndrome de Abstinência a Substâncias/prevenção & controle , Tabagismo/prevenção & controle , Animais , Modelos Animais de Doenças , Camundongos , Nicotina/administração & dosagem , Ratos , Autoadministração , Tabagismo/metabolismo
14.
Br J Pharmacol ; 176(9): 1268-1281, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30767215

RESUMO

BACKGROUND AND PURPOSE: Endocannabinoids are critically involved in brain reward functions, mediated by activation of CB1 receptors, reflecting their high density in the brain. However, the recent discovery of CB2 receptors in the brain, particularly in the midbrain dopamine neurons, has challenged this view and inspired us to re-examine the roles of both CB1 and CB2 receptors in the effects of cannabis. EXPERIMENTAL APPROACH: In the present study, we used the electrical intracranial self-stimulation paradigm to evaluate the effects of various cannabinoid drugs on brain reward in laboratory rats and the roles of CB1 and CB2 receptors activation in brain reward function(s). KEY RESULTS: Two mixed CB1 / CB2 receptor agonists, Δ9 -tetrahydrocannabinol (Δ9 -THC) and WIN55,212-2, produced biphasic effects-mild enhancement of brain-stimulation reward (BSR) at low doses but inhibition at higher doses. Pretreatment with a CB1 receptor antagonist (AM251) attenuated the low dose-enhanced BSR, while a CB2 receptor antagonist (AM630) attenuated high dose-inhibited BSR. To confirm these opposing effects, rats were treated with selective CB1 and CB2 receptor agonists. These compounds produced significant BSR enhancement and inhibition, respectively. CONCLUSIONS AND IMPLICATIONS: CB1 receptor activation produced reinforcing effects, whereas CB2 receptor activation was aversive. The subjective effects of cannabis depend on the balance of these opposing effects. These findings not only explain previous conflicting results in animal models of addiction but also explain why cannabis can be either rewarding or aversive in humans, as expression of CB1 and CB2 receptors may differ in the brains of different subjects.


Assuntos
Canabinoides/farmacologia , Cannabis/química , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Recompensa , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Masculino , Ratos , Ratos Long-Evans , Receptor CB1 de Canabinoide/genética , Receptor CB2 de Canabinoide/genética
15.
Acta Pharmacol Sin ; 40(3): 365-373, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29967454

RESUMO

Cannabinoid CB1 receptors (CB1Rs) have been shown to be a promising target in medication development for the treatment of addiction. However, clinical trials with SR141716A (rimonabant, a selective CB1R antagonist/inverse agonist) for the treatment of obesity and smoking cessation failed due to unwanted side effects, such as depression, anxiety, and suicidal tendencies. Recent preclinical studies suggest that the neutral CB1R antagonist AM4113 may retain the therapeutic anti-addictive effects of SR141716A in nicotine self-administration models and possibly has fewer unwanted side effects. However, little is known about whether AM4113 is also effective for other drugs of abuse, such as opioids and psychostimulants, and whether it produces depressive side effects similar to SR141716A in experimental animals. In this study, we demonstrated that systemic administration of AM4113 (3 and 10 mg/kg) dose-dependently inhibited the self-administration of intravenous heroin but not cocaine or methamphetamine, whereas SR141716A (3 and 10 mg/kg) dose-dependently inhibited the self-administration of heroin and methamphetamine but not cocaine. In the electrical brain-stimulation reward (BSR) paradigm, SR141716A (3 and 10 mg/kg) dose-dependently increased the BSR stimulation threshold (i.e., decreased the stimulation reward), but AM4113 had no effect on BSR at the same doses, suggesting that SR141716A may produce aversive effects while AM4113 may not. Together, these findings show that neutral CB1R antagonists such as AM4113 deserve further research as a new class of CB1R-based medications for the treatment of opioid addiction without SR141716A-like aversive effects.


Assuntos
Antagonistas de Receptores de Canabinoides/farmacologia , Depressão/prevenção & controle , Comportamento de Procura de Droga/efeitos dos fármacos , Dependência de Heroína/prevenção & controle , Pirazóis/farmacologia , Receptor CB1 de Canabinoide/antagonistas & inibidores , Animais , Comportamento Animal/efeitos dos fármacos , Cocaína/efeitos adversos , Condicionamento Operante/efeitos dos fármacos , Heroína/efeitos adversos , Dependência de Heroína/psicologia , Masculino , Metanfetamina/efeitos adversos , Ratos Long-Evans , Recompensa , Rimonabanto/efeitos adversos , Rimonabanto/farmacologia , Autoadministração
16.
Acta Pharmacol Sin ; 40(3): 398-409, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29967455

RESUMO

Cannabinoid CB1 receptors are highly expressed in the brain and functionally modulate presynaptic neurotransmitter release, while cannabinoid CB2 receptors (CB2Rs) were initially identified in the spleen and regarded as peripheral cannabinoid receptors. Recently, growing evidence indicates the presence of functional CB2Rs in the brain. However, this finding is disputed because of the specificity of CB2R antibody signals. We used two strains of currently available partial CB2-knockout (CB2-KO) mice as controls, four anti-rat or anti-mouse CB2R antibodies, and mRNA quantification to further address this issue. Western blot assays using the four antibodies detected a CB2R-like band at ~40 kD in both the brain and spleen. Notably, more bands were detected in the brain than in the spleen, and specific immune peptides blocked band detection. Immunohistochemical assays also detected CB2-like immunostaining in mouse midbrain dopamine neurons. CB2R deletion in CB2-KO mice may reduce or leave CB2R-like immunoreactivity unaltered depending on antibody epitope. Antibodies with epitopes at the receptor-deleted region detected a significant reduction in CB2R band density and immunostaining in N-terminal-deleted Deltagen and C-terminal-deleted Zimmer strain CB2-KO mice. Other antibodies with epitopes at the predicted receptor-undeleted regions detected similar band densities and immunostaining in wild-type and CB2-KO mice. Quantitative RT-PCR assays detected CB2 mRNA expression using probes that targeted upstream or downstream gene sequences but not the probe that targeted the gene-deleted sequence in Deltagen or Zimmer CB2-KO mice. These findings suggest that none of the tested four polyclonal antibodies are highly mouse CB2R-specific. Non-specific binding may be related to the expression of mutant or truncated CB2R-like proteins in partial CB2-KO mice and the use of anti-rat CB2 antibodies because the epitopes are different between rat and mouse CB2Rs.


Assuntos
Anticorpos/imunologia , Receptor CB2 de Canabinoide/imunologia , Receptor CB2 de Canabinoide/metabolismo , Animais , Western Blotting , Neurônios Dopaminérgicos/metabolismo , Técnicas de Inativação de Genes , Imuno-Histoquímica , Mesencéfalo/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ratos , Reação em Cadeia da Polimerase em Tempo Real , Receptor CB2 de Canabinoide/genética , Baço/metabolismo
17.
Pharmacol Biochem Behav ; 176: 53-56, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30414405

RESUMO

The dopamine system-essential for mood and movement-can be activated in two ways: by excitatory inputs that cause burst firing and stamp-in learning or by slow excitatory or inhibitory inputs-like leptin, insulin, ghrelin, or corticosterone-that decrease or increase single-spike (pacemaker) firing rate and that modulate motivation. In the present study we monitored blood samples taken prior to and during intravenous cocaine or saline self-administration in rats. During cocaine-taking, growth hormone and acetylated ghrelin increased 10-fold; glucagon-like peptide-1 (GLP-1) doubled; non-acetylated ghrelin, insulin-like growth factor-1 (IGF-1), and corticosterone increased by 50% and adiponectin increased by 17%. In the same blood samples, leptin, insulin, gastric inhibitory polypeptide (GIP), and prolactin decreased by 40-70%. On the first day of testing under extinction conditions-where the animals earned unexpected saline instead of cocaine-5-fold increases were seen for growth hormone and acetylated ghrelin and equal changes-in amplitude and latency-were seen in each of the other cases except for IGF-1 (which increased at a slower rate). Single-spike firing affects the tonic activation level of the dopamine system, involving very different controls than those that drive burst firing; thus, the present data suggest interesting new targets for medications that might be used in the early stages of drug abstinence.


Assuntos
Transtornos Relacionados ao Uso de Cocaína/sangue , Cocaína/farmacologia , Substituição de Medicamentos/métodos , Solução Salina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Adiponectina/sangue , Animais , Cocaína/administração & dosagem , Corticosterona/sangue , Modelos Animais de Doenças , Polipeptídeo Inibidor Gástrico/sangue , Grelina/sangue , Peptídeo 1 Semelhante ao Glucagon/sangue , Hormônio do Crescimento/sangue , Injeções Intravenosas , Insulina/sangue , Leptina/sangue , Prolactina/sangue , Ratos , Recompensa , Solução Salina/administração & dosagem , Autoadministração
18.
Neuropsychopharmacology ; 44(8): 1415-1424, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30555159

RESUMO

Prescription opioids such as oxycodone are highly effective analgesics for clinical pain management, but their misuse and abuse have led to the current opioid epidemic in the United States. In order to ameliorate this public health crisis, the development of effective pharmacotherapies for the prevention and treatment of opioid abuse and addiction is essential and urgently required. In this study, we evaluated-in laboratory rats-the potential utility of VK4-116, a novel and highly selective dopamine D3 receptor (D3R) antagonist, for the prevention and treatment of prescription opioid use disorders. Pretreatment with VK4-116 (5-25 mg/kg, i.p.) dose-dependently inhibited the acquisition and maintenance of oxycodone self-administration. VK4-116 also lowered the break-point (BP) for oxycodone self-administration under a progressive-ratio schedule of reinforcement, shifted the oxycodone dose-response curve downward, and inhibited oxycodone extinction responding and reinstatement of oxycodone-seeking behavior. In addition, VK4-116 pretreatment dose-dependently enhanced the antinociceptive effects of oxycodone and reduced naloxone-precipitated conditioned place aversion in rats chronically treated with oxycodone. In contrast, VK4-116 had little effect on oral sucrose self-administration. Taken together, these findings indicate a central role for D3Rs in opioid reward and support further development of VK4-116 as an effective agent for mitigating the development of opioid addiction, reducing the severity of withdrawal and preventing relapse.


Assuntos
Extinção Psicológica/efeitos dos fármacos , Indóis/farmacologia , Oxicodona/antagonistas & inibidores , Medição da Dor/efeitos dos fármacos , Piperazinas/farmacologia , Analgésicos/farmacologia , Animais , Condicionamento Psicológico/efeitos dos fármacos , Antagonistas de Dopamina/farmacologia , Relação Dose-Resposta a Droga , Interações Medicamentosas , Masculino , Oxicodona/farmacologia , Ratos , Esquema de Reforço , Autoadministração , Sacarose/antagonistas & inibidores , Sacarose/farmacologia
19.
Neuropsychopharmacology ; 43(13): 2615-2626, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30283001

RESUMO

Opioid abuse is a rapidly growing public health crisis in the USA. Despite extensive research in the past decades, little is known about the etiology of opioid addiction or the neurobiological risk factors that increase vulnerability to opioid use and abuse. Recent studies suggest that the type 2 metabotropic glutamate receptor (mGluR2) is critically involved in substance abuse and addiction. In the present study, we evaluated whether low-mGluR2 expression may represent a risk factor for the development of opioid abuse and addiction using transgenic mGluR2-knockout (mGluR2-KO) rats. Compared to wild-type controls, mGluR2-KO rats exhibited higher nucleus accumbens (NAc) dopamine (DA) and locomotor responses to heroin, higher heroin self-administration and heroin intake, more potent morphine-induced analgesia and more severe naloxone-precipitated withdrawal symptoms. In contrast, mGluR2-KO rats displayed lower motivation for heroin self-administration under high price progressive-ratio (PR) reinforcement conditions. Taken together, these findings suggest that mGluR2 may play an inhibitory role in opioid action, such that deletion of this receptor results in an increase in brain DA responses to heroin and in acute opioid reward and analgesia. Low-mGluR2 expression in the brain may therefore be a risk factor for the initial development of opioid abuse and addiction.


Assuntos
Deleção de Genes , Dependência de Heroína/metabolismo , Heroína/administração & dosagem , Receptores de Glutamato Metabotrópico/deficiência , Esquema de Reforço , Animais , Comportamento Aditivo/genética , Comportamento Aditivo/metabolismo , Comportamento Aditivo/psicologia , Dependência de Heroína/genética , Dependência de Heroína/psicologia , Locomoção/efeitos dos fármacos , Locomoção/fisiologia , Masculino , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Ratos , Ratos Transgênicos , Ratos Wistar , Receptores de Glutamato Metabotrópico/genética , Autoadministração
20.
Biochem Pharmacol ; 157: 235-243, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30195735

RESUMO

Recent studies have demonstrated the utility of drugs modulating the endogenous cannabinoid system to control excessive alcohol intake. Among them, drugs interacting with acylethanolamide receptors including cannabinoid CB1 receptor antagonists/inverse agonists, peroxisome proliferator-activated receptor alpha (PPARα) agonists or peroxisome proliferator-activated receptor gamma (PPARγ) agonists have demonstrated utility in the reduction of alcohol intake in animal models. However, few studies have addressed the potential utility of combining these classes of drugs, especially because of expected safety problems. In the present work we took the advantage of the availability of two novel dual ligands for these receptors, to test the hypothesis that these types of drugs might reproduce and even improve the pharmacological profile of those drugs interacting with single targets. To this end we tested (R)-3-[(4-Benzyl-2-oxooxazolidin-3-yl)methyl]-N-[4-(dodecylcarbamoyl)phenyl]benzamide (NF 10-360), a dual PPARα/γ agonist, and N-[1-(3,4-dihydroxyphenyl)propan-2-yl]oleamide (OLHHA), a dual CB1 receptor antagonist/PPARα agonist, in animal models of alcohol consumption. Both drugs were effective in reducing alcohol intake and alcohol self-administration, being OLHHA a very potent alcohol intake inhibitor (EC50 0.2 mg/kg). OLHHA also reduced self-administration of the opioid oxycodone. OLHHA actions on alcohol self-administration were replicated in alcohol-preferring Marchigian-Sardinian msP rats. Repeated administration of OLHHA did result neither in tolerance nor in toxicological or deleterious metabolic changes in the liver of msP rats. These data support the feasibility of developing novel dual ligands interacting with cannabinoid targets to treat alcohol use disorder in humans.


Assuntos
Alcoolismo/tratamento farmacológico , Ácidos Oleicos/uso terapêutico , PPAR alfa/agonistas , Receptor CB1 de Canabinoide/antagonistas & inibidores , Alcoolismo/sangue , Alcoolismo/metabolismo , Animais , Modelos Animais de Doenças , Etanol/administração & dosagem , Ligantes , Fígado/metabolismo , Masculino , Ácidos Oleicos/administração & dosagem , Oxicodona/administração & dosagem , PPAR gama/agonistas , Ratos Long-Evans , Ratos Wistar , Autoadministração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...