Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 62(51): 21224-21232, 2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38051936

RESUMO

Strongly donating scorpionate ligands support the study of high-valent transition metal chemistry; however, their use is frequently limited by oxidative degradation. To address this concern, we report the synthesis of a tris(imidazol-5-ylidene)borate ligand featuring trifluoromethyl groups surrounding its coordination pocket. This ligand represents the first example of a chelating poly(imidazol-5-ylidene) mesoionic carbene ligand, a scaffold that is expected to be extremely donating. The {NiNO}10 complex of this ligand, as well as that of a previously reported strongly donating tris(imidazol-2-ylidene)borate, has been synthesized and characterized. This new ligand's strong donor properties, as measured by the υNO of its {NiNO}10 complex and natural bonding orbital second-order perturbative energy analysis, are at par with those of the well-studied alkyl-substituted tris(imidazol-2-ylidene)borates, which are known to effectively stabilize high-valent intermediates. The good donor properties of this ligand, despite the electron-withdrawing trifluoromethyl substituents, arise from the strongly donating imidazol-5-ylidene mesoionic carbene arms. These donor properties, when combined with the robustness of trifluoromethyl groups toward oxidative decomposition, suggest this ligand scaffold will be a useful platform in the study of oxidizing high-valent transition-metal species.

2.
Inorg Chem ; 60(18): 13854-13860, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34197705

RESUMO

Late-transition-metal oxo and imide complexes play an important role in the catalytic functionalization and activation of small molecules. An emerging theme in this area over the past few decades has been the use of lower coordination numbers, and pseudotetrahedral geometries in particular, to stabilize what would otherwise be highly reactive species. However, the bonding structure in d6 oxo and imide complexes in this geometry is ambiguous. These species are typically depicted with a triple bond; however, recent experimental evidence suggests significant empirical differences between these complexes and other triply bonded complexes with lower d counts. Here we use a suite of computational orbital localization methods and electron density analyses to probe the bonding structure of isoelectronic d6 CoIII oxo and imide complexes. These analyses suggest that a triple-bond description is inaccurate because of a dramatically weakened σ interaction. While the exact bond order in these cases is necessarily dependent on the model used, several metrics suggest that the strength of the metal-O/N bond is most similar to that of other formally doubly bonded complexes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...