Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Elife ; 72018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30387712

RESUMO

A subset of atypical memory B cells accumulates in malaria and several infections, autoimmune disorders and aging in both humans and mice. It has been suggested these cells are exhausted long-lived memory B cells, and their accumulation may contribute to poor acquisition of long-lasting immunity to certain chronic infections, such as malaria and HIV. Here, we generated an immunoglobulin heavy chain knock-in mouse with a BCR that recognizes MSP1 of the rodent malaria parasite, Plasmodium chabaudi. In combination with a mosquito-initiated P. chabaudi infection, we show that Plasmodium-specific atypical memory B cells are short-lived and disappear upon natural resolution of chronic infection. These cells show features of activation, proliferation, DNA replication, and plasmablasts. Our data demonstrate that Plasmodium-specific atypical memory B cells are not a subset of long-lived memory B cells, but rather short-lived activated cells, and part of a physiologic ongoing B-cell response.


Assuntos
Subpopulações de Linfócitos B/imunologia , Linfócitos B/imunologia , Memória Imunológica , Proteína 1 de Superfície de Merozoito/imunologia , Plasmodium chabaudi/imunologia , Animais , Subpopulações de Linfócitos B/química , Linfócitos B/química , Citometria de Fluxo , Técnicas de Introdução de Genes , Imunoglobulina G/genética , Malária/imunologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Doenças dos Roedores/imunologia
3.
Diabetologia ; 61(11): 2422-2432, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30094465

RESUMO

AIMS/HYPOTHESIS: Diabetic retinopathy is increasing in prevalence worldwide and is fast becoming a global epidemic and a leading cause of visual loss. Current therapies are limited, and the development of effective treatments for diabetic retinopathy requires a greater in-depth knowledge of disease progression and suitable modelling of diabetic retinopathy in animals. The aim of this study was to assess the early pathological changes in retinal morphology and neuronal, inflammatory and vascular features consistent with diabetic retinopathy in the ob/ob mouse model of type 2 diabetes, to investigate whether features similar to those in human diabetic retinopathy were present. METHODS: Male and female wild-type (+/+), heterozygous (+/-) and homozygous (-/-) BTBR ob/ob mice were examined at 6, 10, 15 and 20 weeks of age. Animals were weighed and blood glucose was measured. TUNEL and brain-specific homeobox/POU domain protein 3A (BRN3A) markers were used to examine retinal ganglion cells. We used immunostaining (collagen IV and platelet endothelial cell adhesion molecule [PECAM]/CD31) to reveal retinal vessel degeneration. Spectral domain optical coherence tomography was used to reveal changes in the thickness and structure of the retinal layer. Vitreous fluorophotometry was used to investigate vascular permeability. A-waves, b-waves and oscillatory potentials were measured under photopic and scotopic conditions. Concanavalin A leucostasis and immunostaining with glial fibrillary acidic protein (GFAP) and ionised calcium-binding adapter molecule 1 (IBA-1) identified differences in inflammatory status. Paraffin sections and transmission electron microscopy were used to reveal changes in the thickness and structure of the retinal layer. RESULTS: Following the development of obesity and hyperglycaemia in 2-week-old and 3-week-old ob-/ob- mice, respectively (p < 0.001), early functional deficits (p < 0.001) and thinning of the inner retina (p < 0.001) were identified. Glial activation, leucostasis (p < 0.05) and a shift in microglia/macrophage phenotype were observed before microvascular degeneration (p < 0.05) and elevated vascular permeability occurred (p < 0.05). CONCLUSIONS/INTERPRETATION: The present characterisation of the development of diabetic retinopathy in the ob/ob mouse represents a platform that will enable the development of new therapies, particularly for the early stages of disease.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Retinopatia Diabética/metabolismo , Retinopatia Diabética/patologia , Retina/metabolismo , Retina/patologia , Animais , Glicemia/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/genética , Modelos Animais de Doenças , Feminino , Inflamação/metabolismo , Inflamação/patologia , Masculino , Camundongos , Obesidade/metabolismo , Obesidade/patologia , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/patologia , Vasos Retinianos/metabolismo , Vasos Retinianos/patologia
4.
Sci Rep ; 7(1): 14625, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-29116192

RESUMO

Age-related macular degeneration (AMD) is a major cause of blindness and is associated with complement dysregulation. The disease is a potential target for stem cell therapy but success is likely to be limited by the inflammatory response. We investigated the innate immune properties of human induced-pluripotent stem cell (iPSC)-derived RPE cells, particularly with regard to the complement pathway. We focused on collectin-11 (CL-11), a pattern recognition molecule that can trigger complement activation in renal epithelial tissue. We found evidence of constitutive and hypoxia-induced expression of CL-11 in iPS-RPE cells, and in the extracellular fluid. Complement activation on the cell surface occurred in conjunction with CL-11 binding. CL-11 has been shown to activate inflammatory responses through recognition of L-fucose, which we confirmed by showing that fucosidase-treated cells, largely, failed to activate complement. The presence of CL-11 in healthy murine and human retinal tissues confirmed the biological relevance of CL-11. Our data describe a new trigger mechanism of complement activation that could be important in disease pathogenesis and therapeutic interventions.


Assuntos
Colectinas/metabolismo , Ativação do Complemento/imunologia , Complemento C3/metabolismo , Hipóxia/fisiopatologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Epitélio Pigmentado da Retina/fisiopatologia , Animais , Células Cultivadas , Complemento C3/imunologia , Olho/citologia , Olho/fisiopatologia , Fucose/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Camundongos , Estresse Oxidativo , Epitélio Pigmentado da Retina/citologia
5.
Transl Vis Sci Technol ; 6(5): 10, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29057162

RESUMO

PURPOSE: The purpose of this study was to examine the expression of the anti-inflammatory protein Annexin A1 (AnxA1) in mice and human retinae during uveitis and to determine whether local administration of human recombinant AnxA1 (hrAnxA1) can suppress uveitis in mice. METHODS: Retinal sections from mice (healthy normal and uveitis) and postmortem human (no history of eye disease (n = 5) and uveitis (n = 7)) were stained for AnxA1 expression and imaged by immunofluorescence microscopy. AnxA1 cellular expression was determined by colabeling with CD45, glial fibrillary acidic protein (GFAP), and Iba-1 cells, with additional staining of AnxA1 receptors formyl peptide receptor 1 (FPR1) and FPRL1/FPR2. Mice with acute endotoxin-induced uveitis and chronic experimental autoimmune uveitis were treated locally by intravitreal injection with hrAnxA1, and disease was assessed by clinical scoring and quantification of leukocyte infiltrate via flow cytometry. RESULTS: Constitutive expression of AnxA1 was observed in both healthy mouse and human retinae, and its expression increased during uveitis compared to healthy controls. AnxA1 colocalizes predominantly with CD45+ cells, GFAP+ macroglia, and to a lesser extent, Iba-1+ myeloid cells. We also demonstrate that local treatment with hrAnxA1 attenuates the severity of uveitis in mice. CONCLUSIONS: These data indicate that locally expressed AnxA1 is elevated in the retina during intraocular inflammation. We demonstrate that local administration of hrAnxA1 to augment levels results in suppression of uveitis in mice. TRANSLATIONAL RELEVANCE: Our data suggest that elevated expression of retinal AnxA1 in human uveitis may be immunoregulatory and that local supplementation with hrAnxA1 may provide a potential novel treatment for inflammatory eye diseases such as noninfectious uveitis.

6.
Stem Cell Reports ; 9(3): 820-837, 2017 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-28844659

RESUMO

Transplantation of rod photoreceptors, derived either from neonatal retinae or pluripotent stem cells (PSCs), can restore rod-mediated visual function in murine models of inherited blindness. However, humans depend more upon cone photoreceptors that are required for daylight, color, and high-acuity vision. Indeed, macular retinopathies involving loss of cones are leading causes of blindness. An essential step for developing stem cell-based therapies for maculopathies is the ability to generate transplantable human cones from renewable sources. Here, we report a modified 2D/3D protocol for generating hPSC-derived neural retinal vesicles with well-formed ONL-like structures containing cones and rods bearing inner segments and connecting cilia, nascent outer segments, and presynaptic structures. This differentiation system recapitulates human photoreceptor development, allowing the isolation and transplantation of a pure population of stage-matched cones. Purified human long/medium cones survive and become incorporated within the adult mouse retina, supporting the potential of photoreceptor transplantation for treating retinal degeneration.


Assuntos
Células-Tronco Pluripotentes/citologia , Células Fotorreceptoras Retinianas Cones/citologia , Células Fotorreceptoras Retinianas Cones/transplante , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Diferenciação Celular , Células Cultivadas , Modelos Animais de Doenças , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/ultraestrutura , Humanos , Células-Tronco Pluripotentes/metabolismo , Degeneração Retiniana/patologia , Degeneração Retiniana/terapia , Fatores de Tempo
7.
Sci Rep ; 7: 40830, 2017 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-28112274

RESUMO

Hypoxia inducible factors (HIFs) are ubiquitously expressed transcription factors important for cell homeostasis during dynamic oxygen levels. Myeloid specific HIFs are crucial for aspects of myeloid cell function, including their ability to migrate into inflamed tissues during autoimmune disease. This contrasts with the concept that accumulation of myeloid cells at ischemic and hypoxic sites results from a lack of chemotactic responsiveness. Here we seek to address the role of HIFs in myeloid trafficking during inflammation in a mouse model of human uveitis. We show using mice with myeloid-specific Cre-deletion of HIFs that myeloid HIFs are dispensable for leukocyte migration into the inflamed eye. Myeloid-specific deletion of Hif1a, Epas1, or both together, had no impact on the number of myeloid cells migrating into the eye. Additionally, stabilization of HIF pathways via deletion of Vhl in myeloid cells had no impact on myeloid trafficking into the inflamed eye. Finally, we chemically induce hypoxemia via hemolytic anemia resulting in HIF stabilization within circulating leukocytes to demonstrate the dispensable role of HIFs in myeloid cell migration into the inflamed eye. These data suggest, contrary to previous reports, that HIF pathways in myeloid cells during inflammation and hypoxia are dispensable for myeloid cell tissue trafficking.


Assuntos
Movimento Celular , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Células Mieloides/metabolismo , Uveíte/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Feminino , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células Mieloides/fisiologia , Uveíte/genética , Uveíte/patologia , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo
8.
J Pathol ; 241(1): 45-56, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27701734

RESUMO

Age-related macular degeneration (AMD) is the leading cause of central vision loss worldwide. Loss of retinal pigment epithelium (RPE) is a major pathological hallmark in AMD with or without pathological neovascularization. Although activation of the immune system is implicated in disease progression, pathological pathways remain diverse and unclear. Here, we report an unexpected protective role of a pro-inflammatory cytokine, interleukin-33 (IL-33), in ocular angiogenesis. IL-33 and its receptor (ST2) are expressed constitutively in human and murine retina and choroid. When RPE was activated, IL-33 expression was markedly elevated in vitro. We found that IL-33 regulated tissue remodelling by attenuating wound-healing responses, including reduction in the migration of choroidal fibroblasts and retinal microvascular endothelial cells, and inhibition of collagen gel contraction. In vivo, local administration of recombinant IL-33 inhibited murine choroidal neovascularization (CNV) formation, a surrogate of human neovascular AMD, and this effect was ST2-dependent. Collectively, these data demonstrate IL-33 as a potential immunotherapy and distinguishes pathways for subverting AMD pathology. © 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Assuntos
Interleucina-33/imunologia , Degeneração Macular/imunologia , Adolescente , Adulto , Idoso , Animais , Células Cultivadas , Corioide/imunologia , Neovascularização de Coroide/tratamento farmacológico , Neovascularização de Coroide/imunologia , Fibroblastos/imunologia , Humanos , Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Interleucina-33/uso terapêutico , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Proteínas Recombinantes/uso terapêutico , Epitélio Pigmentado da Retina/imunologia , Adulto Jovem
9.
Exp Eye Res ; 151: 160-70, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27544307

RESUMO

Myeloid cells make a pivotal contribution to tissue homeostasis during inflammation. Both tissue-specific resident populations and infiltrating myeloid cells can cause tissue injury through aberrant activation and/or dysregulated activity. Reliable identification and quantification of myeloid cells within diseased tissues is important to understand pathological inflammatory processes. Flow cytometry is a valuable technique for leukocyte analysis, but a standardized flow cytometric method for myeloid cell populations in the eye is lacking. Here, we validate a reproducible flow cytometry gating approach to characterize myeloid cells in several commonly used models of ocular inflammation. We profile and quantify myeloid subsets across these models, and highlight the value of this strategy in identifying phenotypic differences using Ccr2-deficient mice. This method will aid standardization in the field and facilitate future investigations into the roles of myeloid cells during ocular inflammation.


Assuntos
Doenças Autoimunes/patologia , Citometria de Fluxo/métodos , Células Mieloides/patologia , Retinite/patologia , Uveíte/patologia , Animais , Doenças Autoimunes/imunologia , Contagem de Células , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Epitélio Pigmentado da Retina/imunologia , Epitélio Pigmentado da Retina/patologia , Retinite/imunologia , Uveíte/imunologia
10.
Dis Model Mech ; 9(4): 473-81, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26794131

RESUMO

Endotoxin-induced uveitis (EIU) in rodents is a model of acute Toll-like receptor 4 (TLR4)-mediated organ inflammation, and has been used to model human anterior uveitis, examine leukocyte trafficking and test novel anti-inflammatory therapeutics. Wider adoption has been limited by the requirement for manual, non-specific, cell-count scoring of histological sections from each eye as a measure of disease severity. Here, we describe a comprehensive and efficient technique that uses ocular dissection and multimodal tissue analysis. This allows matched disease scoring by multicolour flow cytometric analysis of the inflammatory infiltrate, protein analysis on ocular supernatants and qPCR on remnant tissues of the same eye. Dynamic changes in cell populations could be identified and mapped to chemokine and cytokine changes over the course of the model. To validate the technique, dose-responsive suppression of leukocyte infiltration by recombinant interleukin-10 was demonstrated, as well as selective suppression of the monocyte (CD11b+Ly6C+) infiltrate, in mice deficient for eitherCcl2orCcr2 Optical coherence tomography (OCT) was used for the first time in this model to allowin vivoimaging of infiltrating vitreous cells, and correlated with CD11b+Ly6G+ counts to provide another unique measure of cell populations in the ocular tissue. Multimodal tissue analysis of EIU is proposed as a new standard to improve and broaden the application of this model.


Assuntos
Olho/patologia , Inflamação/patologia , Uveíte/induzido quimicamente , Uveíte/patologia , Animais , Contagem de Células , Quimiocina CCL2/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Endotoxinas , Feminino , Citometria de Fluxo , Camundongos Endogâmicos C57BL , Infiltração de Neutrófilos , Neutrófilos/patologia , Receptores CCR2/deficiência , Receptores CCR2/metabolismo , Índice de Gravidade de Doença , Tomografia de Coerência Óptica
11.
N Engl J Med ; 372(20): 1887-97, 2015 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-25938638

RESUMO

BACKGROUND: Mutations in RPE65 cause Leber's congenital amaurosis, a progressive retinal degenerative disease that severely impairs sight in children. Gene therapy can result in modest improvements in night vision, but knowledge of its efficacy in humans is limited. METHODS: We performed a phase 1-2 open-label trial involving 12 participants to evaluate the safety and efficacy of gene therapy with a recombinant adeno-associated virus 2/2 (rAAV2/2) vector carrying the RPE65 complementary DNA, and measured visual function over the course of 3 years. Four participants were administered a lower dose of the vector, and 8 were administered a higher dose. In a parallel study in dogs, we investigated the relationship among vector dose, visual function, and electroretinography (ERG) findings. RESULTS: Improvements in retinal sensitivity were evident, to varying extents, in six participants for up to 3 years, peaking at 6 to 12 months after treatment and then declining. No associated improvement in retinal function was detected by means of ERG. Three participants had intraocular inflammation, and two had clinically significant deterioration of visual acuity. The reduction in central retinal thickness varied among participants. In dogs, RPE65 gene therapy with the same vector at lower doses improved vision-guided behavior, but only higher doses resulted in improvements in retinal function that were detectable with the use of ERG. CONCLUSIONS: Gene therapy with rAAV2/2 RPE65 vector improved retinal sensitivity, albeit modestly and temporarily. Comparison with the results obtained in the dog model indicates that there is a species difference in the amount of RPE65 required to drive the visual cycle and that the demand for RPE65 in affected persons was not met to the extent required for a durable, robust effect. (Funded by the National Institute for Health Research and others; ClinicalTrials.gov number, NCT00643747.).


Assuntos
DNA Complementar/administração & dosagem , Terapia Genética , Vetores Genéticos/administração & dosagem , Amaurose Congênita de Leber/terapia , Retina/fisiologia , cis-trans-Isomerases/genética , Adolescente , Animais , Criança , Dependovirus , Modelos Animais de Doenças , Progressão da Doença , Cães , Humanos , Amaurose Congênita de Leber/genética , Mutação , Células Fotorreceptoras de Vertebrados , Visão Ocular , Adulto Jovem
12.
Am J Pathol ; 185(5): 1324-33, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25770475

RESUMO

Elevated tumor necrosis factor (TNF) α levels are associated with chronic autoimmune diseases in which effects of TNFα on immune cells are multiple and complex. Analysis of uveitis in mice exhibiting severe autoimmune inflammation, resulting in a destructive subtotal loss of photoreceptors, revealed the presence of high plasma levels of TNFα and a significant population of CD4(+)TNFα(+) cells in the periphery and the eye at peak disease (TNFα(hi)). We have shown previously by pharmacological activation that the deacetylase Sirtuin 1 (SIRT1) has an anti-inflammatory role in a less severe, TNFα(lo) model of uveitis. We now show that SIRT1 activation fails to clinically suppress severe TNFα(hi) disease, whereas glucocorticoid treatment is successful. TNFα has been reported to mediate cleavage and inactivation of SIRT1 during inflammation, and at peak disease we observed both full-length and cleaved SIRT1 in draining lymph node cells. In vivo systemic TNFα blockade suppressed severe ocular disease and restricted SIRT1 cleavage in the periphery, maintaining full-length active SIRT1 protein. When combining a suboptimal TNFα blockade with SIRT1 activation, a synergistic suppression of severe disease compared with TNFα blockade alone occurred. Our data suggest a new role for TNFα in exacerbating the severity of autoimmune disease by regulating SIRT1 cleavage in draining lymph node effector cells. SIRT1 activation may be effective as an adjunctive treatment for inflammatory conditions not fully controlled by TNFα inhibitors.


Assuntos
Doenças Autoimunes/metabolismo , Sirtuína 1/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Uveíte/metabolismo , Animais , Doenças Autoimunes/imunologia , Doenças Autoimunes/patologia , Western Blotting , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Modelos Animais de Doenças , Feminino , Citometria de Fluxo , Camundongos , Sirtuína 1/imunologia , Fator de Necrose Tumoral alfa/imunologia , Uveíte/imunologia , Uveíte/patologia
13.
J Autoimmun ; 58: 1-11, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25619792

RESUMO

Annexin-A1 (Anx-A1) is an endogenous anti-inflammatory molecule and while described as a repressor of innate immune responses, the role of Anx-A1 in adaptive immunity, and in particular in T helper (Th) cell responses, remains controversial. We have used a T-cell mediated mouse model of retinal autoimmune disease to unravel the role of Anx-A1 in the development of autoreactive Th cell responses and pathology. RBP1-20-immunized C57BL/6 Anx-A1(-/-) mice exhibit significantly enhanced retinal inflammation and pathology as a result of an uncontrolled proliferation and activation of Th17 cells. This is associated with a limited capacity to induce SOCS3, resulting in un-restricted phosphorylation of STAT3. RBP1-20-specific CD4(+) cells from immunized Anx-A1(-/-) animals generated high levels of Th17 cells-associated cytokines. Following disease induction, daily systemic administration of human recombinant Anx-A1 (hrAnx-A1), during the afferent phase of disease, restrained autoreactive CD4(+) cell proliferation, reduced expression of pro-inflammatory cytokines IL-17, IFN-γ and IL-6 and attenuated autoimmune retinal inflammatory disease. Furthermore, in man, Anx-A1 serum levels when measured in active uveitis patient sera were low and associated with the detection of IgM and IgG anti-Anx-A1 antibodies when compared to healthy individuals. This data supports Anx-A1 as an early and critical regulator of Th17 cell driven autoimmune diseases such as uveitis.


Assuntos
Anexina A1/administração & dosagem , Doenças Autoimunes/imunologia , Proteínas Recombinantes/administração & dosagem , Células Th17/efeitos dos fármacos , Uveíte/imunologia , Animais , Anexina A1/genética , Doenças Autoimunes/induzido quimicamente , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Proteínas do Olho/imunologia , Humanos , Mediadores da Inflamação/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fragmentos de Peptídeos/imunologia , Proteínas Recombinantes/genética , Proteínas de Ligação ao Retinol/imunologia , Fator de Transcrição STAT3/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Células Th17/fisiologia , Uveíte/induzido quimicamente
14.
J Autoimmun ; 42: 117-29, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23395551

RESUMO

Sirtuins are a mammalian family of NAD(+)-dependent histone deacetylases that regulate cell function and survival as well as regulating cell responses under inflammatory conditions. SIRT1 activator treatment in vitro using mouse pLN cells, normal human and ocular Behçet's disease donor PBMC resulted in suppressed T cell proliferation and pro-inflammatory cytokine production. Our data suggest a novel mechanism by which SIRT1 activators contribute to suppression of T cell proliferation by both down regulating STAT5A/B expression and suppression of pSTAT5A/B signaling in response to IL-2. Experimental autoimmune uveoretinitis (EAU) in B10.RIII mice is an antigen-specific cell-mediated model of human intra-ocular inflammatory disease. Infiltrating CD4(+) T cells in the retina secrete both IFN-γ and IL-17 and are accompanied by inflammatory granulocytes and macrophages which together result in retinal destruction. Oral SIRT1 activator treatment administered to EAU mice suppressed disease with an accompanying reduction in retinal leukocytic infiltrate, suppressed antigen-specific T cell responses and marked suppression of innate and adaptive pro-inflammatory cytokine production in the eye including IL-6, IL-17A and IFN-γ. In vivo SIRT1 activator treatment also suppressed production of IL-17A, IL-17F, IL-6, TGFß and IL-22 by pLN cells. Oral SIRT1 activator treatment administered to mice during the efferent phase (days7-14) of EAU was effective at suppressing disease. These observations demonstrate that SIRT1 activation is anti-inflammatory in nature and future targeted activation of SIRT1 shows promise as a potential treatment for non-infectious intra-ocular disorders such as uveitis associated with Behçets disease.


Assuntos
Síndrome de Behçet/prevenção & controle , Olho/efeitos dos fármacos , Interleucina-2/metabolismo , Fator de Transcrição STAT5/genética , Sirtuína 1/metabolismo , Linfócitos T/efeitos dos fármacos , Administração Oral , Animais , Síndrome de Behçet/imunologia , Processos de Crescimento Celular/efeitos dos fármacos , Células Cultivadas , Citocinas/metabolismo , Regulação para Baixo , Olho/imunologia , Olho/patologia , Humanos , Terapia de Imunossupressão , Mediadores da Inflamação/metabolismo , Interleucina-2/imunologia , Camundongos , Camundongos Endogâmicos , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais/efeitos dos fármacos , Linfócitos T/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...