Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1374943, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38605953

RESUMO

Introduction: In vivo studies of cancer biology and assessment of therapeutic efficacy are critical to advancing cancer research and ultimately improving patient outcomes. Murine cancer models have proven to be an invaluable tool in pre-clinical studies. In this context, multi-parameter flow cytometry is a powerful method for elucidating the profile of immune cells within the tumor microenvironment and/or play a role in hematological diseases. However, designing an appropriate multi-parameter panel to comprehensively profile the increasing diversity of immune cells across different murine tissues can be extremely challenging. Methods: To address this issue, we designed a panel with 13 fixed markers that define the major immune populations -referred to as the backbone panel- that can be profiled in different tissues but with the option to incorporate up to seven additional fluorochromes, including any marker specific to the study in question. Results: This backbone panel maintains its resolution across different spectral flow cytometers and organs, both hematopoietic and non-hematopoietic, as well as tumors with complex immune microenvironments. Discussion: Having a robust backbone that can be easily customized with pre-validated drop-in fluorochromes saves time and resources and brings consistency and standardization, making it a versatile solution for immuno-oncology researchers. In addition, the approach presented here can serve as a guide to develop similar types of customizable backbone panels for different research questions requiring high-parameter flow cytometry panels.


Assuntos
Corantes Fluorescentes , Neoplasias , Animais , Camundongos , Citometria de Fluxo/métodos , Neoplasias/metabolismo , Microambiente Tumoral
2.
Curr Protoc ; 4(2): e986, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38363042

RESUMO

Cell sorting performance can be evaluated in regard to the purity and recovery of the sorted fractions. The purity provides checks on sample quality, acquisition settings, gating strategy, and the sort decisions made by the instrument, but alone it is not sufficient to evaluate sorting performance. Recovery, defined here as the number of target particles sorted relative to the number of original target particles to be sorted, is a key metric of sort fitness and performance but is often neglected due to difficulties in its measurement. Both purity and recovery require re-sampling of the sorted fraction, but unlike determining purity, calculating recovery calls for the absolute counting of particles in the sorted fraction that comes with large errors, and may not be feasible for rare populations or precious samples. Here, we describe a recently developed metric and method for calculating sort recovery called Rmax, representing the maximum expected recovery for a particular set of instrument settings. Rmax calculation avoids re-sampling of the total sorted fraction and absolute counting, being instead based on the ratios of target and non-target populations in the original pre-sort sample and in the waste stream or center stream catch. The Rmax method is ideal to evaluate and troubleshoot the optimum drop-charge delay of the sorter or any instrument-related failures that will affect sort performance. It can be used as a daily quality control check but can be particularly useful to assess instrument fitness before single-cell or rare population sorts. Because the sorted fraction is not perturbed, we can calculate Rmax during the sort run. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Evaluating sorter setup with Rmax Basic Protocol 2: Finding the maximum Rmax: scanning over the drop charge delay Alternate Protocol: Finding the maximum Rmax for cells: scanning over the drop charge delay Basic Protocol 3: Estimating sorted cell number with Rmax.


Assuntos
Citometria de Fluxo , Citometria de Fluxo/métodos , Separação Celular/métodos , Movimento Celular , Contagem de Células , Controle de Qualidade
3.
bioRxiv ; 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37609261

RESUMO

Cell-intrinsic mechanisms of immunogenicity in ovarian cancer (OC) are not well understood. The presence of damaging mutations in the SWI/SNF chromatin remodeling complex, such as the SMARCA4 (BRG1) catalytic subunit, has been associated with improved response to ICB, however the mechanism by which this occurs is unclear. The aim of this current study was to examine the alterations in tumor cell-intrinsic and extrinsic immune signaling caused by SMARCA4 loss. Using OC models with loss-of-function mutations in SMARCA4 , we found that SMARCA4 loss resulted in increased cancer cell-intrinsic immunogenicity, characterized by upregulation of long-terminal RNA repeats such as endogenous retroviruses, increased expression of interferon-stimulated genes, and upregulation of antigen presentation machinery. Notably, this response was dependent on IRF3 signaling, but was independent of the type I interferon receptor. Mice inoculated with cancer cells bearing SMARCA4 loss demonstrated increased activation of cytotoxic T cells and NK cells in the tumor microenvironment as well as increased infiltration with activated dendritic cells. These results were recapitulated when animals bearing SMARCA4- proficient tumors were treated with a BRG1 inhibitor, suggesting that modulation of chromatin remodeling through targeting SMARCA4 may serve as a strategy to reverse immune evasion in OC.

4.
Methods Mol Biol ; 2469: 193-200, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35508840

RESUMO

Plant organs are built of different cell types, characterized by specific transcription programs and metabolic profiles. The possibility of isolation of such cell types to perform differential transcriptomic, proteomic and metabolomic analyses is highly important to understand many aspects of plant physiology, namely, the structure and regulation of economically valuable specialized metabolic pathways. Here, we describe the isolation of idioblast leaf protoplasts of the medicinal plant Catharanthus roseus by fluorescence-activated cell sorting, taking advantage of the differential autofluorescence properties of those specialized cells.


Assuntos
Catharanthus , Células Vegetais , Citometria de Fluxo , Regulação da Expressão Gênica de Plantas , Células Vegetais/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Proteômica
5.
Sci Transl Med ; 14(646): eabj2829, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35613281

RESUMO

Microbial diversity is associated with improved outcomes in recipients of allogeneic hematopoietic cell transplantation (allo-HCT), but the mechanism underlying this observation is unclear. In a cohort of 174 patients who underwent allo-HCT, we demonstrate that a diverse intestinal microbiome early after allo-HCT is associated with an increased number of innate-like mucosal-associated invariant T (MAIT) cells, which are in turn associated with improved overall survival and less acute graft-versus-host disease (aGVHD). Immune profiling of conventional and unconventional immune cell subsets revealed that the prevalence of Vδ2 cells, the major circulating subpopulation of γδ T cells, closely correlated with the frequency of MAIT cells and was associated with less aGVHD. Analysis of these populations using both single-cell transcriptomics and flow cytometry suggested a shift toward activated phenotypes and a gain of cytotoxic and effector functions after transplantation. A diverse intestinal microbiome with the capacity to produce activating ligands for MAIT and Vδ2 cells appeared to be necessary for the maintenance of these populations after allo-HCT. These data suggest an immunological link between intestinal microbial diversity, microbe-derived ligands, and maintenance of unconventional T cells.


Assuntos
Microbioma Gastrointestinal , Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Células T Invariantes Associadas à Mucosa , Humanos , Ligantes
6.
Neoplasia ; 28: 100790, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35398668

RESUMO

Mutations in IDH1 and IDH2 drive the development of gliomas. These genetic alterations promote tumor cell renewal, disrupt differentiation states, and induce stem-like properties. Understanding how this phenotypic reprogramming occurs remains an area of high interest in glioma research. Previously, we showed that IDH mutation results in the development of a CD24-positive cell population in gliomas. Here, we demonstrate that this CD24-positive population possesses striking stem-like properties at the molecular and phenotypic levels. We found that CD24 expression is associated with stem-like features in IDH-mutant tumors, a patient-derived gliomasphere model, and a neural stem cell model of IDH1-mutant glioma. In orthotopic models, CD24-positive cells display enhanced tumor initiating potency compared to CD24-negative cells. Furthermore, CD24 knockdown results in changes in cell viability, proliferation rate, and gene expression that closely resemble a CD24-negative phenotype. Our data demonstrate that induction of a CD24-positive population is one mechanism by which IDH-mutant tumors acquire stem-like properties. These findings have significant implications for our understanding of the molecular underpinnings of IDH-mutant gliomas.


Assuntos
Neoplasias Encefálicas , Glioma , Isocitrato Desidrogenase , Células-Tronco Neoplásicas , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Antígeno CD24/genética , Antígeno CD24/metabolismo , Glioma/genética , Glioma/metabolismo , Glioma/patologia , Humanos , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Mutação , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Fenótipo
7.
JCO Precis Oncol ; 6: e2100365, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35235413

RESUMO

PURPOSE: Mitogen-activated protein kinase pathway-activating mutations occur in the majority of colorectal cancer (CRC) cases and show mutual exclusivity. We identified 47 epidermal growth factor receptor/BRAF inhibitor-naive CRC patients with dual RAS hotspot/BRAF V600E mutations (CRC-DD) from a cohort of 4,561 CRC patients with clinical next-generation sequencing results. We aimed to define the molecular phenotypes of the CRC-DD and to test if the dual RAS hotspot/BRAF V600E mutations coexist within the same cell. MATERIALS AND METHODS: We developed a single-cell genotyping method with a mutation detection rate of 96.3% and a genotype prediction accuracy of 92.1%. Mutations in the CRC-DD cohort were analyzed for clonality, allelic imbalance, copy number, and overall survival. RESULTS: Application of single-cell genotyping to four CRC-DD revealed the co-occurrence of both mutations in the following percentages of cells per case: NRAS G13D/KRAS G12C, 95%; KRAS G12D/NRAS G12V, 48%; BRAF V600E/KRAS G12D, 44%; and KRAS G12D/NRAS G13V, 14%, respectively. Allelic imbalance favoring the oncogenic allele was less frequent in CRC-DD (24 of 76, 31.5%, somatic mutations) compared with a curated cohort of CRC with a single-driver mutation (CRC-SD; 119 of 232 mutations, 51.3%; P = .013). Microsatellite instability-high status was enriched in CRC-DD compared with CRC-SD (23% v 11.4%, P = .028). Of the seven CRC-DD cases with multiregional sequencing, five retained both driver mutations throughout all sequenced tumor sites. Both CRC-DD cases with discordant multiregional sequencing were microsatellite instability-high. CONCLUSION: Our findings indicate that dual-driver mutations occur in a rare subset of CRC, often within the same tumor cells and across multiple tumor sites. Their presence and a lower rate of allelic imbalance may be related to dose-dependent signaling within the mitogen-activated protein kinase pathway.


Assuntos
Neoplasias Colorretais , Proteínas Proto-Oncogênicas B-raf , Neoplasias Colorretais/genética , Humanos , Instabilidade de Microssatélites , Proteínas Quinases Ativadas por Mitógeno/genética , Mutação/genética , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas p21(ras)/genética
8.
Polymers (Basel) ; 13(19)2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34641046

RESUMO

Double-walled nanoparticles (DWNPs), containing doxorubicin as a model drug, were produced using poly-(D,L-lactide-co-glycolide) (PLGA) and poly(L-lactide) (PLLA) by the solvent evaporation technique. Double-walled microparticles containing doxorubicin were also produced to make possible the examination of the inner morphology and drug distribution using optical and fluorescence microscopy. The produced microparticles present a double-walled structure with doxorubicin solubilized in the PLGA-rich phase. The DWNPs produced present very low initial burst values and a sustained DOX release for at least 90 days with release rates decreasing with the increase in the PLLA amount. Zero-order release kinetics were obtained after day 15. The results support that the PLLA layer acts as a rate control barrier and that the diffusion of doxorubicin from the drug-loaded inner PLGA core can be retarded by an increase in the thickness of the unloaded outer layer. The unloaded double-walled nanoparticles produced were used in in vitro tests with CHO cells and demonstrate that they are nontoxic, while the double-walled nanoparticles loaded with doxorubicin caused a great cellular viability and decreased when tested in vitro.

9.
Molecules ; 26(12)2021 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-34205347

RESUMO

PURPOSE: Vascular targeted photodynamic therapy (VTP) is a nonsurgical tumor ablation approach used to treat early-stage prostate cancer and may also be effective for upper tract urothelial cancer (UTUC) based on preclinical data. Toward increasing response rates to VTP, we evaluated its efficacy in combination with concurrent PD-1 inhibitor/OX40 agonist immunotherapy in a urothelial tumor-bearing model. EXPERIMENTAL DESIGN: In mice allografted with MB-49 UTUC cells, we compared the effects of combined VTP with PD-1 inhibitor/OX40 agonist with those of the component treatments on tumor growth, survival, lung metastasis, and antitumor immune responses. RESULTS: The combination of VTP with both PD-1 inhibitor and OX40 agonist inhibited tumor growth and prolonged survival to a greater degree than VTP with either immunotherapeutic individually. These effects result from increased tumor infiltration and intratumoral proliferation of cytotoxic and helper T cells, depletion of Treg cells, and suppression of myeloid-derived suppressor cells. CONCLUSIONS: Our findings suggest that VTP synergizes with PD-1 blockade and OX40 agonist to promote strong antitumor immune responses, yielding therapeutic efficacy in an animal model of urothelial cancer.


Assuntos
Receptor de Morte Celular Programada 1/agonistas , Receptores OX40/agonistas , Neoplasias Urológicas/imunologia , Neoplasias Urológicas/terapia , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Imunidade/efeitos dos fármacos , Imunoterapia/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fotoquimioterapia/métodos , Linfócitos T/efeitos dos fármacos , Neoplasias Urológicas/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
10.
Front Immunol ; 12: 641664, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33815394

RESUMO

Coelomocytes is the generic name for a collection of cellular morphotypes, present in many coelomate animals, and highly variable among echinoderm classes. The roles attributed to the major types of these free circulating cells present in the coelomic fluid of echinoderms include immune response, phagocytic digestion and clotting. Our main aim in this study was to characterize coelomocytes found in the coelomic fluid of Marthasterias glacialis (class Asteroidea) by using a combination of flow cytometry (FC), imaging flow cytometry (IFC) and fluorescence plus transmission electron microscopy (TEM). Two coelomocyte populations (P1 and P2) identified through flow cytometry were subsequently studied in terms of abundance, morphology, ultrastructure, cell viability and cell cycle profiles. Ultrastructurally, P2 diploid cells were present as two main morphotypes, similar to phagocytes and vertebrate thrombocytes, whereas the smaller P1 cellular population was characterized by low mitotic activity, a relatively undifferentiated cytotype and a high nucleus/cytoplasm ratio. In the present study we could not rule out possible similarities between haploid P1 cells and stem-cell types in other animals. Additionally, we report the presence of two other morphotypes in P2 that could only be detected by fluorescence microscopy, as well as a morphotype revealed via combined microscopy/FC. This integrative experimental workflow combined cells physical separation with different microscopic image capture technologies, enabling us to better tackle the characterization of the heterogeneous composition of coelomocytes populations.


Assuntos
Líquidos Corporais , Citometria de Fluxo , Fagócitos , Estrelas-do-Mar , Animais , Líquidos Corporais/citologia , Líquidos Corporais/imunologia , Fagócitos/citologia , Fagócitos/imunologia , Estrelas-do-Mar/citologia , Estrelas-do-Mar/imunologia
11.
Cytometry A ; 99(1): 42-50, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33175460

RESUMO

The impact of the COVID-19 pandemic on training and Shared Resource Laboratory (SRL) operations such as staffing, facility access, and social distancing, has affected facilities around the globe to different degrees based on restrictions set by various geographical and institutional settings. With these restrictions come unique challenges regarding user and staff training and education, for both theory and practice. Most notably, limitations in facility access, occupancy, staffing availability, network restrictions and trainee engagement call for innovative solutions for training when traditional in-person options are not feasible. Through the use of remote access tools and prerecorded educational and training materials, SRLs are able to overcome these obstacles. Here, we focus on readily available technologies and general guidelines that SRLs in different environments can use for remote cytometry training and education, while highlighting key obstacles that still remain. Although SRLs may face initial struggles in transitioning trainings to a virtual format, remote technologies provide unique opportunities to advance current training programs. © 2020 International Society for Advancement of Cytometry.


Assuntos
COVID-19/prevenção & controle , Laboratórios/tendências , Admissão e Escalonamento de Pessoal/tendências , Distanciamento Físico , Ensino/tendências , Teletrabalho/tendências , COVID-19/epidemiologia , Humanos , Pandemias/prevenção & controle , Fluxo de Trabalho
12.
Comp Med ; 70(4): 336-348, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32605691

RESUMO

Detection methods for Demodex musculi were historically unreliable, and testing was rarely performed because its prevalence in laboratory mice was underestimated. Although infestations are unapparent in most mouse strains, D. musculi burdens are higher and clinical signs detected in various immunodeficient strains. The parasite's influence on the immune system of immunocompetent mice is unknown. We characterized mite burden (immunocompetent and immunodeficient strains) and immunologic changes (immunocompetent strains only) in naïve Swiss Webster (SW; outbred), C57BL/6NCrl (B6; Th1 responder), BALB/cAnNCrl (BALB/c; Th2 responder) and NOD. Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG; immunodeficient) mice after exposure to Demodex-infested NSG mice. Infested and uninfested age-matched mice of each strain (n = 5) were euthanized 14, 28, 56, and 112 d after exposure. Mite burden was determined through PCR analysis and skin histopathology; B-cell and CD4+ and CD8+ T-cell counts and activation states (CD25 and CD69) were evaluated by using flow cytometry; CBC counts were performed; and serum IgE levels were measured by ELISA. Mite burden and PCR copy number correlated in NSG mice, which had the highest mite burden, but not in immunocompetent strains. Infested immunocompetent animals developed diffuse alopecia by day 112, and both BALB/c and C57BL/6 mice had significantly increased IgE levels. These findings aligned with the skewed Th1 or Th2 immunophenotype of each strain. BALB/c mice mounted the most effective host response, resulting in the lowest mite burden of all immunocompetent strains at 112 d after infestation without treatment. Clinically significant hematologic abnormalities were absent and immunophenotype was unaltered in immunocompetent animals. Topical treat- ment with imidacloprid-moxidectin (weekly for 8 wk) was effective at eradicating mites by early as 7 d after treatment. IgE levels decreased substantially in infested BALB/c mice after treatment. These findings demonstrate a need for D. musculi surveillance in mouse colonies, because the infestation may influence the use of infested mice in select studies.


Assuntos
Camundongos/parasitologia , Infestações por Ácaros/diagnóstico , Doenças dos Roedores/diagnóstico , Animais , Feminino , Imunocompetência , Masculino , Camundongos/imunologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Infestações por Ácaros/transmissão , Ácaros/patogenicidade , Doenças dos Roedores/transmissão , Pele/parasitologia
13.
Front Immunol ; 10: 2038, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31543878

RESUMO

Germinal centers (GCs) are transient anatomical microenvironments where antibody affinity maturation and memory B cells generation takes place. In the past, models of Germinal Center (GC) dynamics have focused on understanding antibody affinity maturation rather than on the main mechanism(s) driving their rise-and-fall dynamics. Here, based on a population dynamics model core, we compare three mechanisms potentially responsible for this GC biphasic behavior dependent on follicular dendritic cell (FDC) maturation, follicular T helper (Tfh) cell maturation, and antigen depletion. Analyzing the kinetics of B and T cells, as well as its parameter sensitivities, we found that only the FDC-maturation-based model could describe realistic GC dynamics, whereas the simple Tfh-maturation and antigen-depletion mechanisms, as implemented here, could not. We also found that in all models the processes directly related to Tfh cell kinetics have the highest impact on GC dynamics. This suggests the existence of some still unknown mechanism(s) tuning GC dynamics by affecting Tfh cell response to proliferation-inducing stimuli.


Assuntos
Linfócitos B/imunologia , Linfócitos B/metabolismo , Centro Germinativo/imunologia , Centro Germinativo/metabolismo , Modelos Biológicos , Algoritmos , Animais , Divisão Celular , Humanos
14.
Cytometry A ; 95(6): 598-644, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31207046
15.
Nature ; 569(7756): 361-367, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30959515

RESUMO

Here we delineate the ontogeny of the mammalian endoderm by generating 112,217 single-cell transcriptomes, which represent all endoderm populations within the mouse embryo until midgestation. We use graph-based approaches to model differentiating cells, which provides a spatio-temporal characterization of developmental trajectories and defines the transcriptional architecture that accompanies the emergence of the first (primitive or extra-embryonic) endodermal population and its sister pluripotent (embryonic) epiblast lineage. We uncover a relationship between descendants of these two lineages, in which epiblast cells differentiate into endoderm at two distinct time points-before and during gastrulation. Trajectories of endoderm cells were mapped as they acquired embryonic versus extra-embryonic fates and as they spatially converged within the nascent gut endoderm, which revealed these cells to be globally similar but retain aspects of their lineage history. We observed the regionalized identity of cells along the anterior-posterior axis of the emergent gut tube, which reflects their embryonic or extra-embryonic origin, and the coordinated patterning of these cells into organ-specific territories.


Assuntos
Endoderma/citologia , Endoderma/embriologia , Intestinos/citologia , Intestinos/embriologia , Análise de Célula Única , Animais , Blastocisto/citologia , Padronização Corporal , Diferenciação Celular , Linhagem da Célula , Feminino , Gastrulação , Masculino , Camundongos
16.
Eur J Nutr ; 58(1): 113-130, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29151137

RESUMO

PURPOSE: Epidemiological and intervention studies have attempted to link the health effects of a diet rich in fruits and vegetables with the consumption of polyphenols and their impact in neurodegenerative diseases. Studies have shown that polyphenols can cross the intestinal barrier and reach concentrations in the bloodstream able to exert effects in vivo. However, the effective uptake of polyphenols into the brain is still regarded with some reservations. Here we describe a combination of approaches to examine the putative transport of blackberry-digested polyphenols (BDP) across the blood-brain barrier (BBB) and ultimate evaluation of their neuroprotective effects. METHODS: BDP was obtained by in vitro digestion of blackberry extract and BDP major aglycones (hBDP) were obtained by enzymatic hydrolysis. Chemical characterization and BBB transport of extracts were evaluated by LC-MSn. BBB transport and cytoprotection of both extracts was assessed in HBMEC monolayers. Neuroprotective potential of BDP was assessed in NT2-derived 3D co-cultures of neurons and astrocytes and in primary mouse cerebellar granule cells. BDP-modulated genes were evaluated by microarray analysis. RESULTS: Components from BDP and hBDP were shown to be transported across the BBB. Physiologically relevant concentrations of both extracts were cytoprotective at endothelial level and BDP was neuroprotective in primary neurons and in an advanced 3D cell model. The major canonical pathways involved in the neuroprotective effect of BDP were unveiled, including mTOR signaling and the unfolded protein response pathway. Genes such as ASNS and ATF5 emerged as novel BDP-modulated targets. CONCLUSIONS: BBB transport of BDP and hBDP components reinforces the health benefits of a diet rich in polyphenols in neurodegenerative disorders. Our results suggest some novel pathways and genes that may be involved in the neuroprotective mechanism of the BDP polyphenol components.


Assuntos
Barreira Hematoencefálica/metabolismo , Fármacos Neuroprotetores/farmacologia , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Rubus/metabolismo , Animais , Células Cultivadas , Cromatografia Líquida , Humanos , Técnicas In Vitro , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos BALB C , Modelos Animais , Fármacos Neuroprotetores/metabolismo , Extratos Vegetais/metabolismo , Reação em Cadeia da Polimerase , Polifenóis/metabolismo
17.
Nat Commun ; 9(1): 3533, 2018 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-30166553

RESUMO

Granular cell tumors (GCTs) are rare tumors that can arise in multiple anatomical locations, and are characterized by abundant intracytoplasmic granules. The genetic drivers of GCTs are currently unknown. Here, we apply whole-exome sequencing and targeted sequencing analysis to reveal mutually exclusive, clonal, inactivating somatic mutations in the endosomal pH regulators ATP6AP1 or ATP6AP2 in 72% of GCTs. Silencing of these genes in vitro results in impaired vesicle acidification, redistribution of endosomal compartments, and accumulation of intracytoplasmic granules, recapitulating the cardinal phenotypic characteristics of GCTs and providing a novel genotypic-phenotypic correlation. In addition, depletion of ATP6AP1 or ATP6AP2 results in the acquisition of oncogenic properties. Our results demonstrate that inactivating mutations of ATP6AP1 and ATP6AP2 are likely oncogenic drivers of GCTs and underpin the genesis of the intracytoplasmic granules that characterize them, providing a genetic link between endosomal pH regulation and tumorigenesis.


Assuntos
Tumor de Células Granulares/genética , Mutação/genética , Receptores de Superfície Celular/genética , ATPases Vacuolares Próton-Translocadoras/genética , Proliferação de Células/genética , Proliferação de Células/fisiologia , Exoma , Feminino , Citometria de Fluxo , Estudos de Associação Genética , Células HEK293 , Humanos , Masculino
18.
Oncotarget ; 8(39): 65917-65931, 2017 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-29029482

RESUMO

Preferentially Expressed Antigen in Melanoma (PRAME) is a cancer/testis antigen that is overexpressed in a broad range of malignancies, while absent in most healthy human tissues, making it an attractive diagnostic cancer biomarker and therapeutic target. Although commonly viewed as an intracellular protein, we have demonstrated that PRAME has a membrane bound form with an external epitope targetable with conventional antibodies. We generated a polyclonal antibody (Membrane associated PRAME Antibody 1, MPA1) against an extracellular peptide sequence of PRAME. Binding of MPA1 to recombinant PRAME was evaluated by Enzyme-Linked Immunosorbent Assay (ELISA). Flow cytometry and confocal immunofluorescence microscopy of MPA1 was performed on multiple tumor cell lines. Reverse Transcription Polymerase Chain Reaction (RT-PCR) for PRAME was conducted to compare protein and transcriptional expression levels. We demonstrated a robust proof-of-concept for PRAME targeting in vivo by radiolabeling MPA1 with zirconium-89 (89Zr-DFO-MPA1) and demonstrating high specific uptake in PRAME expressing tumors. To our knowledge, this is the first time a cancer testis antigen has been targeted using conventional antibody technologies. Thus, PRAME can be exploited for multiple clinical applications, including targeted therapy, diagnostic imaging and treatment guidance in a wide-range of malignancies, with minimal off-target toxicity.

19.
Elife ; 62017 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-28875937

RESUMO

Foxj1a is necessary and sufficient to specify motile cilia. Using transcriptional studies and slow-scan two-photon live imaging capable of identifying the number of motile and immotile cilia, we now established that the final number of motile cilia depends on Notch signalling (NS). We found that despite all left-right organizer (LRO) cells express foxj1a and the ciliary axonemes of these cells have dynein arms, some cilia remain immotile. We identified that this decision is taken early in development in the Kupffer's Vesicle (KV) precursors the readout being her12 transcription. We demonstrate that overexpression of either her12 or Notch intracellular domain (NICD) increases the number of immotile cilia at the expense of motile cilia, and leads to an accumulation of immotile cilia at the anterior half of the KV. This disrupts the normal fluid flow intensity and pattern, with consequent impact on dand5 expression pattern and left-right (L-R) axis establishment.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Cílios/fisiologia , Fatores de Transcrição Forkhead/metabolismo , Receptores Notch/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Perfilação da Expressão Gênica , Microscopia Intravital , Microscopia de Fluorescência , Movimento (Física) , Transdução de Sinais , Peixe-Zebra
20.
Cytometry A ; 91(2): 144-151, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28075531

RESUMO

Flow cytometry is the tool of choice for high-speed acquisition and analysis of large cell populations, with the tradeoff of lacking intracellular spatial information. Although in the last decades flow cytometry systems that can actually acquire two-dimensional spatial information were developed, some of the limitations remained though, namely constrains related to sample size and lack of depth or dynamic information. The combination of fluidics and light-sheet illumination has the potential to address these limitations. By having cells travelling with the flowing sheath one can, in a controlled fashion, force them at constant speed through the light-sheet enabling the synchronized acquisition of several optical sections, that is, three-dimensional imaging. This approach has already been used for imaging cellular spheroids, plankton, and zebra-fish embryos. In this review, we discuss the known solutions and standing challenges of performing three-dimensional high-throughput imaging of multicellular biological models using fluidics, while retaining cell and organelle-level resolution. © 2017 International Society for Advancement of Cytometry.


Assuntos
Citometria de Fluxo/métodos , Imageamento Tridimensional/métodos , Microscopia de Fluorescência/métodos , Animais , Ensaios de Triagem em Larga Escala , Plâncton/ultraestrutura , Esferoides Celulares/ultraestrutura , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...