Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Data Brief ; 16: 531-600, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29264374

RESUMO

We investigated gene expression responses in BALB/c mice exposed by gavage to 5 mg/kg bw/day of E171 for 2, 7, 14 and 21 days. Food additive E171 (titanium dioxide) has been shown to induce oxidative stress and DNA damage in vitro as well as facilitating growth of colorectal tumours in vivo. Full genome expression changes of the colon of mice were investigated by using Agilent SurePrint G3 mouse Gene exp 60kv2 microarrays slides. The data presented in this DiB include all differentially expressed for each time point with EntrezGeneID, gene symbols, gene names and Log2FC as well as genes included in pathways after over-representation analysis in ConsensusPathDataBase. The functions of these genes in relation to the colon were described in our associated article (Proquin et al., 2017 in press) [1]. Raw and normalized gene expression data are available through NCBI GEO (GEO accession: GSE92563).

2.
Food Chem Toxicol ; 111: 153-165, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29128614

RESUMO

Dietary factors that may influence the risks of colorectal cancer, including specific supplements, are under investigation. Previous studies showed the capacity of food additive titanium dioxide (E171) to induce DNA damage in vitro and facilitate growth of colorectal tumours in vivo. This study aimed to investigate the molecular mechanisms behind these effects after E171 exposure. BALB/c mice were exposed by gavage to 5 mg/kgbw/day of E171 for 2, 7, 14, and 21 days. Transcriptome changes were studied by whole genome mRNA microarray analysis on the mice's distal colons. In addition, histopathological changes as well as a proliferation marker were analysed. The results showed significant gene expression changes in the olfactory/GPCR receptor family, oxidative stress, the immune system and of cancer related genes. Transcriptome analysis also identified genes that thus far have not been included in known biological pathways and can induce functional changes by interacting with other genes involved in different biological pathways. Histopathological analysis showed alteration and disruption in the normal structure of crypts inducing a hyperplastic epithelium. At cell proliferation level, no consistent increase over time was observed. These results may offer a mechanistic framework for the enhanced tumour growth after ingestion of E171 in BALB/c mice.


Assuntos
Aditivos Alimentares/farmacologia , Titânio/farmacologia , Transcriptoma/efeitos dos fármacos , Animais , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
3.
Food Chem Toxicol ; 93: 20-31, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27117919

RESUMO

Colorectal cancer is the fourth worldwide cause of death and even if some dietary habits are consider risk factors, the contribution of food additives including foodgrade titanium dioxide (TiO2), designated as E171, has been poorly investigated. We hypothesized that oral E171 intake could have impact on the enhancement of colorectal tumor formation and we aimed to investigate if E171 administration could enhance tumor formation in a colitis associated cancer (CAC) model. BALB/c male mice were grouped as follows: a) control, b) E171, c) CAC and d) CAC + E171 group (n = 6). E171 used in this study formed agglomerates of 300 nm in water. E171 intragastric administration (5 mg/kg body weight/5 days/10 weeks) was unable to induce tumor formation but dysplastic alterations were observed in the distal colon but enhanced the tumor formation in distal colon (CAC + E171 group) measured by tumor progression markers. Some E171 particles were internalized in colonic cells of the E171 and CAC + E171 groups and both groups showed a decrease in goblet cells in the distal colon. However the CAC + E171 group showed a higher decrease of these cells that act as protection barrier in colon. These results suggest that E171 could worsen pre-existent intestinal diseases.


Assuntos
Colite/complicações , Neoplasias Colorretais/patologia , Modelos Animais de Doenças , Aditivos Alimentares/toxicidade , Células Caliciformes/patologia , Titânio/toxicidade , Animais , Células Cultivadas , Colite/tratamento farmacológico , Neoplasias Colorretais/induzido quimicamente , Células Caliciformes/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos BALB C
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...