Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Virulence ; 10(1): 568-587, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31198092

RESUMO

Serine protease autotransporters of Enterobacteriaceae (SPATEs) are secreted proteins that contribute to virulence and function as proteases, toxins, adhesins, and/or immunomodulators. An extra-intestinal pathogenic E. coli (ExPEC) O1:K1 strain, QT598, isolated from a turkey, was shown to contain vat, tsh, and three uncharacterized SPATE-encoding genes. Uncharacterized SPATEs: Sha (Serine-protease hemagglutinin autotransporter), TagB and TagC (tandem autotransporter genes B and C) were tested for activities including hemagglutination, autoaggregation, and cytotoxicity when expressed in E. coli K-12. Sha and TagB conferred autoaggregation and hemagglutination activities. TagB, TagC, and Sha all exhibited cytopathic effects on a bladder epithelial cell line. In QT598, tagB and tagC are tandemly encoded on a genomic island, and were present in 10% of UTI isolates and 4.7% of avian E. coli. Sha is encoded on a virulence plasmid and was present in 1% of UTI isolates and 20% of avian E. coli. To specifically examine the role of SPATEs for infection, the 5 SPATE genes were deleted from strain QT598 and tested for cytotoxicity. Loss of all five SPATEs abrogated the cytopathic effect on bladder epithelial cells, although derivatives producing any of the 5 SPATEs retained cytopathic activity. In mouse infections, sha gene-expression was up-regulated a mean of sixfold in the bladder compared to growth in vitro. Loss of either tagBC or sha did not reduce urinary tract colonization. Deletion of all 5 SPATEs, however, significantly reduced competitive colonization of the kidney supporting a cumulative role of SPATEs for QT598 in the mouse UTI model.


Assuntos
Escherichia coli Extraintestinal Patogênica/genética , Rim/microbiologia , Serina Proteases/metabolismo , Sistemas de Secreção Tipo V/metabolismo , Animais , Toxinas Bacterianas/metabolismo , Linhagem Celular , Infecções por Escherichia coli/microbiologia , Escherichia coli Extraintestinal Patogênica/patogenicidade , Feminino , Genoma Bacteriano , Humanos , Camundongos , Filogenia , Serina Proteases/genética , Sistemas de Secreção Tipo V/genética , Sistema Urinário/microbiologia , Virulência
2.
J Infect Dis ; 214(6): 916-24, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27412582

RESUMO

The genotoxin colibactin, synthesized by Escherichia coli, is a secondary metabolite belonging to the chemical family of hybrid polyketide/nonribosomal peptide compounds. It is produced by a complex biosynthetic assembly line encoded by the pks pathogenicity island. The presence of this large cluster of genes in the E. coli genome is invariably associated with the high-pathogenicity island, encoding the siderophore yersiniabactin, which belongs to the same chemical family as colibactin. The E. coli heat shock protein HtpG (Hsp90Ec) is the bacterial homolog of the eukaryotic molecular chaperone Hsp90, which is involved in the protection of cellular proteins against a variety of environmental stresses. In contrast to eukaryotic Hsp90, the functions and client proteins of Hsp90Ec are poorly known. Here, we demonstrated that production of colibactin and yersiniabactin is abolished in the absence of Hsp90Ec We further characterized an interplay between the Hsp90Ec molecular chaperone and the ClpQ protease involved in colibactin and yersiniabactin synthesis. Finally, we demonstrated that Hsp90Ec is required for the full in vivo virulence of extraintestinal pathogenic E. coli This is the first report highlighting the role of heat shock protein Hps90Ec in the production of two secondary metabolites involved in E. coli virulence.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Mutagênicos/metabolismo , Peptídeos/metabolismo , Fenóis/metabolismo , Policetídeos/metabolismo , Sideróforos/metabolismo , Tiazóis/metabolismo , Animais , Modelos Animais de Doenças , Endopeptidase Clp/metabolismo , Escherichia coli/genética , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/patologia , Proteínas de Escherichia coli/genética , Feminino , Deleção de Genes , Proteínas de Choque Térmico HSP90/genética , Camundongos Endogâmicos C57BL , Mapeamento de Interação de Proteínas , Ratos Wistar , Virulência
3.
Mol Microbiol ; 97(4): 717-32, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25982934

RESUMO

Salmochelins are glucosylated forms of enterobactin (enterochelin) and contribute to the virulence of Salmonella enterica and some extra-intestinal pathogenic Escherichia coli (ExPEC). Fes, IroD and IroE esterases degrade salmochelins and enterobactin to release iron. We investigated the apparently redundant role of these esterases in virulence and in salmochelin production and utilization of the ExPEC strain χ7122. The ΔiroD, ΔfesΔiroD and ΔfesΔiroDΔiroE mutants displayed attenuated virulence phenotypes in an avian systemic infection model. Growth of ΔfesΔiroD and ΔfesΔiroDΔiroE mutants was severely reduced in the presence of conalbumin, and although enterobactin was produced, no salmochelins were detected in the culture supernatants of these mutants. Elimination of catecholate synthesis via an entA deletion in a ΔfesΔiroDΔiroE restored growth in the presence of conalbumin, but only partially restored the virulence of the strain. Salmochelin production was reestablished by reintroducing active esterases. Intracellular accumulation of cyclic mono-glucosylated enterobactin was observed in the triple mutant ΔfesΔiroDΔiroE, and deletion of fepC, required for catecholate import into the cytoplasm, restored salmochelin detection in supernatants. These results suggest that in the absence of esterases, cyclic salmochelins are synthesized and secreted, but remain cell-bound after internalization indicating that esterase-mediated degradation is required for re-secretion of catecholate siderophore molecules following their utilization.


Assuntos
Enterobactina/análogos & derivados , Escherichia coli/patogenicidade , Esterases/metabolismo , Sideróforos/metabolismo , Animais , Transporte Biológico , Galinhas , Enterobactina/metabolismo , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Compostos Férricos/metabolismo , Glucosídeos/metabolismo , Salmonella enterica/metabolismo , Virulência
4.
Artigo em Inglês | MEDLINE | ID: mdl-24367764

RESUMO

For all microorganisms, acquisition of metal ions is essential for survival in the environment or in their infected host. Metal ions are required in many biological processes as components of metalloproteins and serve as cofactors or structural elements for enzymes. However, it is critical for bacteria to ensure that metal uptake and availability is in accordance with physiological needs, as an imbalance in bacterial metal homeostasis is deleterious. Indeed, host defense strategies against infection either consist of metal starvation by sequestration or toxicity by the highly concentrated release of metals. To overcome these host strategies, bacteria employ a variety of metal uptake and export systems and finely regulate metal homeostasis by numerous transcriptional regulators, allowing them to adapt to changing environmental conditions. As a consequence, iron, zinc, manganese, and copper uptake systems significantly contribute to the virulence of many pathogenic bacteria. However, during the course of our experiments on the role of iron and manganese transporters in extraintestinal Escherichia coli (ExPEC) virulence, we observed that depending on the strain tested, the importance of tested systems in virulence may be different. This could be due to the different set of systems present in these strains, but literature also suggests that as each pathogen must adapt to the particular microenvironment of its site of infection, the role of each acquisition system in virulence can differ from a particular strain to another. In this review, we present the systems involved in metal transport by Enterobacteria and the main regulators responsible for their controlled expression. We also discuss the relative role of these systems depending on the pathogen and the tissues they infect.


Assuntos
Enterobacteriaceae/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Metais/metabolismo , Fatores de Virulência/metabolismo , Transporte Biológico , Infecções por Enterobacteriaceae/microbiologia , Sequestrantes/metabolismo
5.
Vet Immunol Immunopathol ; 152(1-2): 156-67, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23102565

RESUMO

Avian pathogenic Escherichia coli (APEC) causes respiratory disease and sepsis in poultry. To persist in its host, E. coli requires essential nutrients including iron. Since iron is limited in extra-intestinal tissues, E. coli produces siderophores, small molecules with high affinity for ferric iron, to sequester this essential nutrient. To counter bacterial siderophore systems, mammalian hosts secrete siderocalin (also called lipocalin 2 or NGAL), which binds ferric-siderophore complexes rendering them unavailable to bacteria. In humans and mice, siderocalin is known to play a role in primary defense against bacterial infections. In poultry, 4 proteins display homology to the human NGAL (CALß, CALγ, Ggal-C8GC and Ex-FABP). The function and expression of the genes coding for these 4 proteins during infection by APEC is still unknown. Expression levels of these genes were determined by quantitative RT-PCR using RNA extracted from lungs, livers and spleens of healthy 3-week-old chickens and chickens infected with APEC. The gene coding for Ex-FABP was overexpressed in all organs tested. It was significantly more overexpressed in the lungs and liver than in the spleen (37.3 and 27.3 times versus 11.5 times, respectively). The genes coding for Calß and Calγ were also found significantly overexpressed in the liver (27 and 8.2 times, respectively). To confirm the function of Ex-FABP as a siderocalin, the gene coding for this protein was cloned in an expression vector and the protein was purified. In vitro growth inhibition of E. coli strains by Ex-FABP was assayed in parallel with growth inhibition caused by human siderocalin. Purified Ex-FABP inhibited growth of E. coli K-12, which only produces the siderophore enterobactin. However, E. coli strains producing pathogen-associated siderophores including salmochelins (glucosylated enterobactin), aerobactin and yersiniabactin grew normally in the presence of Ex-FABP. These results indicate that Ex-FABP is an avian siderocalin with a siderophore-binding activity similar to that of human siderocalin and that pathogen-specific siderophores are required by APEC to overcome this innate defense protein in poultry.


Assuntos
Proteínas Aviárias/farmacologia , Infecções por Escherichia coli/veterinária , Escherichia coli/imunologia , Proteínas de Ligação a Ácido Graxo/farmacologia , Lipocalinas/biossíntese , Doenças das Aves Domésticas/microbiologia , Sequência de Aminoácidos , Animais , Proteínas Aviárias/genética , Proteínas Aviárias/imunologia , Proteínas Aviárias/isolamento & purificação , Galinhas , Infecções por Escherichia coli/imunologia , Infecções por Escherichia coli/metabolismo , Infecções por Escherichia coli/microbiologia , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/imunologia , Proteínas de Ligação a Ácido Graxo/isolamento & purificação , Lipocalinas/genética , Lipocalinas/imunologia , Lipocalinas/isolamento & purificação , Lipocalinas/farmacologia , Modelos Moleculares , Dados de Sequência Molecular , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/metabolismo , RNA/química , RNA/genética , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Alinhamento de Sequência , Sideróforos/genética , Sideróforos/imunologia , Organismos Livres de Patógenos Específicos
7.
Vet Microbiol ; 153(1-2): 89-98, 2011 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-21680117

RESUMO

Extraintestinal pathogenic E. coli (ExPEC) are responsible for many infectious diseases in livestock, such as airsacculitis in poultry, acute mastitis in dairy animals and neonatal septicaemia and urinary tract infections (UTI) in pigs and cattle. In their animal hosts, ExPEC have to cope with low iron availability. By using different strategies, ExPEC strains are able to retrieve iron sequestered by host proteins. One of these strategies is the use of siderophores, which are small secreted molecules with high affinity for iron. ExPEC are known to synthesize up to four different types of siderophores: enterobactin, salmochelins, yersiniabactin and aerobactin. Steps required for iron acquisition by siderophores include (1) siderophore synthesis in the cytoplasm, (2) siderophore secretion, (3) ferri-siderophore reception, (4) ferri-siderophore internalization and (5) iron release in the cytoplasm. Each siderophore has specific properties and may be differentially regulated to provide different advantages, potentially allowing ExPEC to adapt to different environmental conditions or to overcome host innate immunity. Iron acquisition by siderophores plays a significant role in ExPEC virulence and, as it requires outer membrane receptors, it constitutes an interesting target for the development of vaccines that could be used to limit the number of infectious diseases due to ExPEC in livestock.


Assuntos
Infecções por Escherichia coli/veterinária , Escherichia coli/patogenicidade , Ferro/metabolismo , Sideróforos/metabolismo , Animais , Bovinos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Feminino , Infecções Urinárias/microbiologia , Infecções Urinárias/veterinária , Virulência
8.
FEMS Immunol Med Microbiol ; 62(1): 1-10, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21362060

RESUMO

Extraintestinal pathogenic Escherichia coli (ExPEC) are an important cause of urinary tract infections, neonatal meningitis and septicaemia in humans. Animals are recognized as a reservoir for human intestinal pathogenic E. coli, but whether animals are a source for human ExPEC is still a matter of debate. Pathologies caused by ExPEC are reported for many farm animals, especially for poultry, in which colibacillosis is responsible for huge losses within broiler chickens. Cases are also reported for companion animals. Commensal E. coli strains potentially carrying virulence factors involved in the development of human pathologies also colonize the intestinal tract of animals. This review focuses on the recent evidence of the zoonotic potential of ExPEC from animal origin and their potential direct or indirect transmission from animals to humans. As antimicrobials are commonly used for livestock production, infections due to antimicrobial-resistant ExPEC transferred from animals to humans could be even more difficult to treat. These findings, combined with the economic impact of ExPEC in the animal production industry, demonstrate the need for adapted measures to limit the prevalence of ExPEC in animal reservoirs while reducing the use of antimicrobials as much as possible.


Assuntos
Reservatórios de Doenças/veterinária , Infecções por Escherichia coli/transmissão , Escherichia coli/isolamento & purificação , Zoonoses/transmissão , Animais , Galinhas , Reservatórios de Doenças/microbiologia , Escherichia coli/classificação , Escherichia coli/genética , Escherichia coli/patogenicidade , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/veterinária , Humanos , Gado , Carne , Epidemiologia Molecular , Animais de Estimação , Virulência , Zoonoses/microbiologia
9.
J Microbiol Methods ; 85(1): 53-61, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21277341

RESUMO

The rapid and direct quantification of Campylobacter spp. in complex substrates like feces or environmental samples is crucial to facilitate epidemiological studies on Campylobacter in pig production systems. We developed a real-time PCR assay for detecting and quantifying Campylobacter spp. directly in pig feces with the use of an internal control. Campylobacter spp. and Yersinia ruckeri primers-probes sets were designed and checked for specificity with diverse Campylobacter, related organisms, and other bacterial pathogens before being used in field samples. The quantification of Campylobacter spp. by the real-time PCR then was realized on 531 fecal samples obtained from experimentally and naturally infected pigs; the numeration of Campylobacter on Karmali plate was done in parallel. Yersinia ruckeri, used as bacterial internal control, was added to the samples before DNA extraction to control DNA-extraction and PCR-amplification. The sensitivity of the PCR assay was 10 genome copies. The established Campylobacter real-time PCR assay showed a 7-log-wide linear dynamic range of quantification (R²=0.99) with a detection limit of 200 Colony Forming Units of Campylobacter per gram of feces. A high correlation was found between the results obtained by real-time PCR and those by culture at both qualitative and quantitative levels. Moreover, DNA extraction followed by real-time PCR reduced the time needed for analysis to a few hours (within a working day). In conclusion, the real-time PCR developed in this study provides new tools for further epidemiological surveys to investigate the carriage and excretion of Campylobacter by pigs.


Assuntos
Carga Bacteriana/métodos , Campylobacter/isolamento & purificação , Fezes/microbiologia , Reação em Cadeia da Polimerase/métodos , Animais , Carga Bacteriana/normas , Campylobacter/genética , Primers do DNA/genética , Sondas de Oligonucleotídeos/genética , Padrões de Referência , Sensibilidade e Especificidade , Suínos , Yersinia ruckeri/genética
10.
Curr Microbiol ; 61(6): 500-5, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20419374

RESUMO

Campylobacter jejuni (C. jejuni) is a leading cause of human enteritis worldwide and the most frequently reported zoonotic agent in the European Union. Despite the fact that C. jejuni is a microaerobic bacteria, known as a fragile one, it is able to survive through adverse conditions such as oxidative stress. The purpose of this study was first to test the oxidative stress resistance in 22 C. jejuni strains of various origins, and to compare adhesive and invasive abilities of four selected strains in the intestinal cell line Ht-29. Secondly, the effect of an oxidative stress on C. jejuni adhesion to Ht-29 cells was investigated. Results show that all the tested strains were able to survive after a 24-h incubation period in broth containing 10 µM of paraquat. From 12.5 µM of paraquat, bacterial strains exhibit different behaviour, and only three strains are able to survive at 25 µM of paraquat. In addition, this study revealed that the number of bound bacteria to epithelial cells increases with augmentation of paraquat concentration, suggesting a link between oxidative stress survival of C. jejuni and virulence on Ht-29 cells.


Assuntos
Antibacterianos/farmacologia , Aderência Bacteriana , Campylobacter jejuni/efeitos dos fármacos , Campylobacter jejuni/patogenicidade , Células Epiteliais/microbiologia , Oxidantes/farmacologia , Células HT29 , Humanos , Viabilidade Microbiana/efeitos dos fármacos , Paraquat/farmacologia , Fatores de Tempo
11.
Curr Microbiol ; 58(2): 134-8, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18956226

RESUMO

Campylobacter jejuni represents one of the leading causes of bacterial enteritis throughout the world. Poultry is an important source of C. jejuni. Despite hygiene measures taken in the production chain, C. jejuni is frequently isolated from poultry meat. C. jejuni is a microaerophilic pathogen, affected by oxidative stress. Freeze-thaw treatment induces cell death by several mechanisms, including oxidative stress. In this article, we investigate the role of oxidative stress in C. jejuni sensitivity during and after a freeze-thaw treatment. This treatment results in dead and sublethally injured cells. The latter population might have an increased sensitivity to oxidative stress. To test this, cells were stored for another 24 h at 4 degrees C under aerobic conditions and compared to cells that were not treated. C. jejuni survival was measured in different media (water, BHI broth, chicken juice, and chicken fillets) to test the environment protective effect. Different strains were tested, including sodB (encoding the superoxide dismutase) and cj1371 (encoding a periplasmic protein) mutants. Cell death was particularly important in water but similar in BHI, chicken juice, and chicken fillets. The sodB mutant was more sensitive to freeze-thaw treatment, suggesting that the killing mechanism involves production of superoxide anions. On the contrary, the cj1371 mutant was more sensitive to storage at 4 degrees C, suggesting that it does not play a role in the detoxification of reactive oxygen species. Storage at 4 degrees C after freeze-thaw treatment increases cell death of oxidative stress-sensitive populations. Sensitization to oxidative stress, freeze-thaw treatment, and further storage at 4 degrees C could be a way to reduce C. jejuni populations on carcasses.


Assuntos
Campylobacter jejuni/metabolismo , Microbiologia de Alimentos , Conservação de Alimentos , Viabilidade Microbiana , Estresse Oxidativo , Animais , Campylobacter jejuni/química , Campylobacter jejuni/genética , Galinhas , Meios de Cultura/química , Congelamento , Mutação
12.
Res Microbiol ; 159(9-10): 718-26, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18775777

RESUMO

Campylobacter jejuni is a microaerophilic pathogen representing one of the major causes of bacterial enteritis in humans. The oxidative stress response after exposure to paraquat, a strong oxidising agent, was analysed by two-dimensional protein electrophoresis and Maldi-ToF mass spectrometry. Oxidative stress and redox-related proteins were overexpressed: FldA flavodoxin and a pyruvate-flavodoxin oxidoreductase encoded by cj1476c. No increase in SodB expression was observed. An additional quantitative RT-PCR analysis showed an increase in katA but not in sodB expression. However, the sodB mutant was very sensitive to paraquat, its basal expression level being essential for oxidative stress resistance. Proteins related to iron homeostasis (Cft and a non-haem iron protein encoded by cj0012c) and general stress response (FusA and MreB) were found overexpressed. Interestingly, a two-component regulator encoded by cj0355c was differentially expressed in the presence of paraquat and could play a role in induction of the C. jejuni oxidative stress response. Virulence factors (CadF, FlaA and a VacJ homolog encoded by cj1371) were also found overexpressed under oxidative stress conditions and a cj1371 mutant showed increased sensitivity to paraquat, suggesting that the Cj1371 periplasmic protein could play a role in C. jejuni oxidative stress resistance.


Assuntos
Proteínas de Bactérias/metabolismo , Campylobacter jejuni/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica , Estresse Oxidativo , Paraquat/farmacologia , Proteínas Periplásmicas/metabolismo , Proteínas de Bactérias/genética , Campylobacter jejuni/genética , Campylobacter jejuni/metabolismo , Campylobacter jejuni/fisiologia , Eletroforese em Gel Bidimensional , Resposta ao Choque Térmico , Humanos , Proteínas Periplásmicas/genética , Transdução de Sinais , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...