Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Int J Mol Sci ; 23(22)2022 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-36430443

RESUMO

McArdle disease is a rare autosomal recessive disorder caused by mutations in the PYGM gene. This gene encodes for the skeletal muscle isoform of glycogen phosphorylase (myophosphorylase), the first enzyme in glycogenolysis. Patients with this disorder are unable to obtain energy from their glycogen stored in skeletal muscle, prompting an exercise intolerance. Currently, there is no treatment for this disease, and the lack of suitable in vitro human models has prevented the search for therapies against it. In this article, we have established the first human iPSC-based model for McArdle disease. For the generation of this model, induced pluripotent stem cells (iPSCs) from a patient with McArdle disease (harbouring the homozygous mutation c.148C>T; p.R50* in the PYGM gene) were differentiated into myogenic cells able to contract spontaneously in the presence of motor neurons and generate calcium transients, a proof of their maturity and functionality. Additionally, an isogenic skeletal muscle model of McArdle disease was created. As a proof-of-concept, we have tested in this model the rescue of PYGM expression by two different read-through compounds (PTC124 and RTC13). The developed model will be very useful as a platform for testing drugs or compounds with potential pharmacological activity.


Assuntos
Glicogênio Fosforilase Muscular , Doença de Depósito de Glicogênio Tipo V , Células-Tronco Pluripotentes Induzidas , Humanos , Doença de Depósito de Glicogênio Tipo V/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Glicogênio/metabolismo , Tecnologia
2.
Cytotherapy ; 23(5): 399-410, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33727013

RESUMO

With the redefinition of osteoarthritis (OA) and the understanding that the joint behaves as an organ, OA is now considered a systemic illness with a low grade of chronic inflammation. Mitochondrial dysfunction is well documented in OA and has the capacity to alter chondrocyte and synoviocyte function. Transmitochondrial cybrids are suggested as a useful cellular model to study mitochondrial biology in vitro, as they carry different mitochondrial variants with the same nuclear background. The aim of this work was to study mitochondrial and metabolic function of cybrids with mitochondrial DNA from healthy (N) and OA donors. In this work, the authors demonstrate that cybrids from OA patients behave differently from cybrids from N donors in several mitochondrial parameters. Furthermore, OA cybrids behave similarly to OA chondrocytes. These results enhance our understanding of the role of mitochondria in the degeneration process of OA and present cybrids as a useful model to study OA pathogenesis.


Assuntos
DNA Mitocondrial , Osteoartrite , Condrócitos , DNA Mitocondrial/genética , Humanos , Mitocôndrias/genética , Osteoartrite/genética
3.
Int J Mol Sci ; 21(9)2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32366037

RESUMO

Leigh syndrome (LS) is the most frequent infantile mitochondrial disorder (MD) and is characterized by neurodegeneration and astrogliosis in the basal ganglia or the brain stem. At present, there is no cure or treatment for this disease, partly due to scarcity of LS models. Current models generally fail to recapitulate important traits of the disease. Therefore, there is an urgent need to develop new human in vitro models. Establishment of induced pluripotent stem cells (iPSCs) followed by differentiation into neurons is a powerful tool to obtain an in vitro model for LS. Here, we describe the generation and characterization of iPSCs, neural stem cells (NSCs) and iPSC-derived neurons harboring the mtDNA mutation m.13513G>A in heteroplasmy. We have performed mitochondrial characterization, analysis of electrophysiological properties and calcium imaging of LS neurons. Here, we show a clearly compromised oxidative phosphorylation (OXPHOS) function in LS patient neurons. This is also the first report of electrophysiological studies performed on iPSC-derived neurons harboring an mtDNA mutation, which revealed that, in spite of having identical electrical properties, diseased neurons manifested mitochondrial dysfunction together with a diminished calcium buffering capacity. This could lead to an overload of cytoplasmic calcium concentration and the consequent cell death observed in patients. Importantly, our results highlight the importance of calcium homeostasis in LS pathology.


Assuntos
Cálcio/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Doença de Leigh/metabolismo , Consumo de Oxigênio/fisiologia , Western Blotting , Proliferação de Células/fisiologia , Células Cultivadas , Eletrofisiologia , Imunofluorescência , Humanos , Ácido Láctico/metabolismo , Doença de Leigh/patologia , Mitocôndrias/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Consumo de Oxigênio/genética
5.
J Cell Physiol ; 234(11): 19511-19522, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30950033

RESUMO

Mitochondrial disorders (MDs) arise as a result of a respiratory chain dysfunction. While some MDs can affect a single organ, many involve several organs, the brain being the most affected, followed by heart and/or muscle. Many of these diseases are associated with heteroplasmic mutations in the mitochondrial DNA (mtDNA). The proportion of mutated mtDNA must exceed a critical threshold to produce disease. Therefore, understanding how embryonic development determines the heteroplasmy level in each tissue could explain the organ susceptibility and the clinical heterogeneity observed in these patients. In this report, the dynamics of heteroplasmy and the influence in cardiac commitment of the mutational load of the m.13513G>A mutation has been analyzed. This mutation has been reported as a frequent cause of Leigh syndrome (LS) and is commonly associated with cardiac problems. In this report, induced pluripotent stem cell (iPSc) technology has been used to delve into the molecular mechanisms underlying cardiac disease in LS. When mutation m.13513G>A is above a threshold, iPSc-derived cardiomyocytes (iPSc-CMs) could not be obtained due to an inefficient epithelial-mesenchymal transition. Surprisingly, these cells are redirected toward neuroectodermal lineages that would give rise to the brain. However, when mutation is below that threshold, dysfunctional CM are generated in a mutant-load dependent way. We suggest that distribution of the m.13513G>A mutation during cardiac differentiation is not at random. We propose a possible explanation of why neuropathology is a frequent feature of MD, but cardiac involvement is not always present.


Assuntos
DNA Mitocondrial/genética , Transporte de Elétrons/genética , Cardiopatias/genética , Doença de Leigh/genética , Doenças Mitocondriais/genética , Diferenciação Celular/genética , Complexo I de Transporte de Elétrons/genética , Desenvolvimento Embrionário/genética , Transição Epitelial-Mesenquimal/genética , Cardiopatias/patologia , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Doença de Leigh/patologia , Mitocôndrias/genética , Mitocôndrias/patologia , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/patologia , Proteínas Mitocondriais/genética , Mutação , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Placa Neural/crescimento & desenvolvimento , Placa Neural/patologia , Fenótipo
6.
Stem Cell Res ; 36: 101418, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30897488

RESUMO

A mouse iPSC line, IISHDOi005-A, generated from fibroblasts obtained from a mouse C57BL/6J with an age of 1 year and a half, has been obtained. For this purpose, reprogramming factors Oct3/4, Sox2, Klf4, and c-Myc were delivered using Sendai virus.


Assuntos
Linhagem Celular , Células-Tronco Pluripotentes Induzidas , Envelhecimento/patologia , Animais , Diferenciação Celular , Técnicas de Reprogramação Celular , Fibroblastos , Cariótipo , Fator 4 Semelhante a Kruppel , Camundongos Endogâmicos C57BL , Vírus Sendai
7.
Nat Commun ; 9(1): 4065, 2018 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-30283131

RESUMO

Mitochondrial protein synthesis requires charging mt-tRNAs with their cognate amino acids by mitochondrial aminoacyl-tRNA synthetases, with the exception of glutaminyl mt-tRNA (mt-tRNAGln). mt-tRNAGln is indirectly charged by a transamidation reaction involving the GatCAB aminoacyl-tRNA amidotransferase complex. Defects involving the mitochondrial protein synthesis machinery cause a broad spectrum of disorders, with often fatal outcome. Here, we describe nine patients from five families with genetic defects in a GatCAB complex subunit, including QRSL1, GATB, and GATC, each showing a lethal metabolic cardiomyopathy syndrome. Functional studies reveal combined respiratory chain enzyme deficiencies and mitochondrial dysfunction. Aminoacylation of mt-tRNAGln and mitochondrial protein translation are deficient in patients' fibroblasts cultured in the absence of glutamine but restore in high glutamine. Lentiviral rescue experiments and modeling in S. cerevisiae homologs confirm pathogenicity. Our study completes a decade of investigations on mitochondrial aminoacylation disorders, starting with DARS2 and ending with the GatCAB complex.


Assuntos
Cardiomiopatias/enzimologia , Cardiomiopatias/genética , Doenças Mitocondriais/enzimologia , Doenças Mitocondriais/genética , Mutação/genética , Transferases de Grupos Nitrogenados/genética , Subunidades Proteicas/genética , Sequência de Aminoácidos , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Lactente , Recém-Nascido , Lentivirus/metabolismo , Masculino , Modelos Moleculares , Miocárdio/patologia , Miocárdio/ultraestrutura , Transferases de Grupos Nitrogenados/química , Transferases de Grupos Nitrogenados/metabolismo , Fosforilação Oxidativa , Linhagem , Biossíntese de Proteínas , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , RNA de Transferência/metabolismo , Saccharomyces cerevisiae/metabolismo
8.
Stem Cell Res ; 31: 152-156, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30096711

RESUMO

A human iPSC line, IISHDOi004-A, from fibroblasts obtained from a patient with Usher syndrome, harboring a homozygous mutation in the USH2A gene (c.2276G>T; p.Cys759Phe) has been generated. Reprogramming factors Oct3/4, Sox2, Klf4, and c-Myc were delivered using Sendai virus.


Assuntos
Proteínas da Matriz Extracelular/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Síndromes de Usher/genética , Linhagem Celular , Humanos , Fator 4 Semelhante a Kruppel , Mutação
9.
Stem Cell Res ; 28: 131-135, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29471262

RESUMO

We have generated a human iPSC line, IISHDOi002-A, from commercial primary normal human dermal fibroblasts belonging to an African mitochondrial haplogroup (L3), and with a 46, XY/47, XYY mosaicism. For this purpose, reprogramming factors Oct3/4, Sox2, Klf4 and cMyc were delivered using a non-integrative methodology that involves the use of Sendai virus.


Assuntos
População Negra/genética , Técnicas de Cultura de Células/métodos , Cromossomos Humanos/genética , Haplótipos/genética , Mitocôndrias/genética , Mosaicismo , Sequência de Bases , Diferenciação Celular , Linhagem Celular , Humanos , Recém-Nascido , Cariotipagem , Fator 4 Semelhante a Kruppel , Masculino , Mycoplasma/isolamento & purificação
10.
Stem Cell Res ; 24: 81-84, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-29034899

RESUMO

We have generated a human iPSC line IISHDOi003-A from fibroblasts of a patient with a dominant optic atrophy 'plus' phenotype, harbouring a heterozygous mutation, c.1635C>A; p.Ser545Arg, in the OPA1 gene. Reprogramming factors Oct3/4, Sox2, Klf4, and c-Myc were delivered using Sendai virus.


Assuntos
GTP Fosfo-Hidrolases/genética , Atrofia Óptica Autossômica Dominante/genética , Linhagem Celular , GTP Fosfo-Hidrolases/farmacologia , Humanos , Fator 4 Semelhante a Kruppel , Masculino , Mutação , Atrofia Óptica Autossômica Dominante/metabolismo , Atrofia Óptica Autossômica Dominante/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA