Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Trends Mol Med ; 29(2): 152-172, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36503994

RESUMO

Adenosine triphosphate (ATP)-binding cassette (ABC) transporters are a 48-member superfamily of membrane proteins that actively transport a variety of biological substrates across lipid membranes. Their functional diversity defines an expansive involvement in myriad aspects of human biology. At least 21 ABC transporters underlie rare monogenic disorders, with even more implicated in the predisposition to and symptomology of common and complex diseases. Such broad (patho)physiological relevance places this class of proteins at the intersection of disease causation and therapeutic potential, underlining them as promising targets for drug discovery, as exemplified by the transformative CFTR (ABCC7) modulator therapies for cystic fibrosis. This review will explore the growing relevance of ABC transporters to human disease and their potential as small-molecule drug targets.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Fibrose Cística , Humanos , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Fibrose Cística/metabolismo , Trifosfato de Adenosina/metabolismo
2.
Nature ; 595(7869): 695-700, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34262177

RESUMO

Agouti-related peptide (AGRP)-expressing neurons are activated by fasting-this causes hunger1-4, an aversive state that motivates the seeking and consumption of food5,6. Eating returns AGRP neuron activity towards baseline on three distinct timescales: rapidly and transiently following sensory detection of food cues6-8, slowly and longer-lasting in response to nutrients in the gut9,10, and even more slowly and permanently with restoration of energy balance9,11. The rapid regulation by food cues is of particular interest as its neurobiological basis and purpose are unknown. Given that AGRP neuron activity is aversive6, the sensory cue-linked reductions in activity could function to guide behaviour. To evaluate this, we first identified the circuit mediating sensory cue inhibition and then selectively perturbed it to determine function. Here, we show that a lateral hypothalamic glutamatergic â†’ dorsomedial hypothalamic GABAergic (γ-aminobutyric acid-producing)12 → AGRP neuron circuit mediates this regulation. Interference with this circuit impairs food cue inhibition of AGRP neurons and, notably, greatly impairs learning of a sensory cue-initiated food-acquisition task. This is specific for food, as learning of an identical water-acquisition task is unaffected. We propose that decreases in aversive AGRP neuron activity6 mediated by this food-specific circuit increases the incentive salience13 of food cues, and thus facilitates the learning of food-acquisition tasks.


Assuntos
Proteína Relacionada com Agouti/metabolismo , Sinais (Psicologia) , Alimentos , Fome/fisiologia , Vias Neurais , Neurônios/fisiologia , Animais , Região Hipotalâmica Lateral/fisiologia , Aprendizagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Optogenética
3.
Endocrinology ; 161(4)2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32166324

RESUMO

Genetic research has revealed pro-opiomelanocortin (POMC) to be a fundamental regulator of energy balance and body weight in mammals. Within the brain, POMC is primarily expressed in the arcuate nucleus of the hypothalamus (ARC), while a smaller population exists in the brainstem nucleus of the solitary tract (POMCNTS). We performed a neurochemical characterization of this understudied population of POMC cells using transgenic mice expressing green fluorescent protein (eGFP) under the control of a POMC promoter/enhancer (PomceGFP). Expression of endogenous Pomc mRNA in the nucleus of the solitary tract (NTS) PomceGFP cells was confirmed using fluorescence-activating cell sorting (FACS) followed by quantitative PCR. In situ hybridization histochemistry of endogenous Pomc mRNA and immunohistochemical analysis of eGFP revealed that POMC is primarily localized within the caudal NTS. Neurochemical analysis indicated that POMCNTS is not co-expressed with tyrosine hydroxylase (TH), glucagon-like peptide 1 (GLP-1), cholecystokinin (CCK), brain-derived neurotrophic factor (BDNF), nesfatin, nitric oxide synthase 1 (nNOS), seipin, or choline acetyltransferase (ChAT) cells, whereas 100% of POMCNTS is co-expressed with transcription factor paired-like homeobox2b (Phox2b). We observed that 20% of POMCNTS cells express receptors for adipocyte hormone leptin (LepRbs) using a PomceGFP:LepRbCre:tdTOM double-reporter line. Elevations in endogenous or exogenous leptin levels increased the in vivo activity (c-FOS) of a small subset of POMCNTS cells. Using ex vivo slice electrophysiology, we observed that this effect of leptin on POMCNTS cell activity is postsynaptic. These findings reveal that a subset of POMCNTS cells are responsive to both changes in energy status and the adipocyte hormone leptin, findings of relevance to the neurobiology of obesity.


Assuntos
Tronco Encefálico/metabolismo , Neurônios/metabolismo , Pró-Opiomelanocortina/metabolismo , Receptores para Leptina/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Colecistocinina/metabolismo , Colina O-Acetiltransferase/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Camundongos , Camundongos Transgênicos , Óxido Nítrico Sintase Tipo I/metabolismo , Nucleobindinas/metabolismo , Regiões Promotoras Genéticas , Receptores para Leptina/genética , Tirosina 3-Mono-Oxigenase/metabolismo
4.
Appl Clin Genet ; 12: 87-93, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31239751

RESUMO

Purpose: The hypothalamic melanocortin-4 receptor (MC4R) pathway, a component of the central melanocortin pathway, regulates energy balance and satiety. Rare genetic disorders of obesity may be characterized by impaired MC4R pathway signaling, which results in early-onset severe obesity and insatiable hunger (hyperphagia). The TEMPO registry (NCT03479437) is a voluntary, prospective, open-ended registry of individuals with rare genetic disorders of obesity due to mutations in genes within the MC4R pathway who have early-onset severe obesity. The objective of the TEMPO registry is to evaluate the burden of rare genetic disorders of obesity on individuals, their parents/caregivers, health care providers, and the health care system. Patients and methods: Individuals with rare genetic disorders of obesity (adults aged ≥18 years and children and adolescents aged from 2 to 17 years) will be referred by their health care providers or by a genetic screening study. Individuals must meet age- and sex-specific body mass index values that define the clinical criteria for severe obesity and carry selected variants in MC4R or in one of several genes upstream or downstream of the MC4R. Online surveys will be completed by the individual, parent/caregiver, and health care provider at baseline and annually thereafter and will collect data on demographics, results of genetic testing, medical/family history, disease characteristics, resource utilization, eating habits/hunger episodes, social and emotional impacts, and interest in future clinical trial participation. Conclusions: The TEMPO registry will provide insights into the overall course and disease burden for individuals with rare genetic disorders of obesity. Health care providers may use this resource to improve the identification, diagnosis, and treatment of individuals with rare forms of genetic obesity.

5.
Molecules ; 24(10)2019 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-31100979

RESUMO

In this work we summarize our understanding of melanocortin 4 receptor (MC4R) pathway activation, aiming to define a safe and effective therapeutic targeting strategy for the MC4R. Delineation of cellular MC4R pathways has provided evidence for distinct MC4R signaling events characterized by unique receptor activation kinetics. While these studies remain narrow in scope, and have largely been explored with peptidic agonists, the results provide a possible correlation between distinct ligand groups and differential MC4R activation kinetics. In addition, when a set of small-molecule and peptide MC4R agonists are compared, evidence of biased signaling has been reported. The results of such mechanistic studies are discussed.


Assuntos
Peptídeos/farmacocinética , Receptor Tipo 4 de Melanocortina/agonistas , Receptor Tipo 4 de Melanocortina/metabolismo , Transdução de Sinais , Animais , Peso Corporal , Sistema Cardiovascular/efeitos dos fármacos , AMP Cíclico/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Humanos , Cinética , Ligantes , Peptídeos/química , Peptídeos/farmacologia , Primatas , Ligação Proteica , Transporte Proteico , Roedores , Transdução de Sinais/efeitos dos fármacos , alfa-MSH/análogos & derivados , alfa-MSH/farmacologia
6.
Neuron ; 102(3): 653-667.e6, 2019 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-30879785

RESUMO

SIM1-expressing paraventricular hypothalamus (PVH) neurons are key regulators of energy balance. Within the PVHSIM1 population, melanocortin-4 receptor-expressing (PVHMC4R) neurons are known to regulate satiety and bodyweight, yet they account for only half of PVHSIM1 neuron-mediated regulation. Here we report that PVH prodynorphin-expressing (PVHPDYN) neurons, which notably lack MC4Rs, function independently and additively with PVHMC4R neurons to account for the totality of PVHSIM1 neuron-mediated satiety. Moreover, PVHPDYN neurons are necessary for prevention of obesity in an independent but equipotent manner to PVHMC4R neurons. While PVHPDYN and PVHMC4R neurons both project to the parabrachial complex (PB), they synaptically engage distinct efferent nodes, the pre-locus coeruleus (pLC), and central lateral parabrachial nucleus (cLPBN), respectively. PB-projecting PVHPDYN neurons, like PVHMC4R neurons, receive input from interoceptive ARCAgRP neurons, respond to caloric state, and are sufficient and necessary to control food intake. This expands the CNS satiety circuitry to include two non-overlapping PVH to hindbrain circuits.


Assuntos
Comportamento Alimentar/fisiologia , Neurônios/citologia , Obesidade/fisiopatologia , Núcleo Hipotalâmico Paraventricular/citologia , Resposta de Saciedade/fisiologia , Proteína Relacionada com Agouti/metabolismo , Animais , Núcleo Arqueado do Hipotálamo/citologia , Núcleo Arqueado do Hipotálamo/metabolismo , Núcleo Arqueado do Hipotálamo/fisiologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Metabolismo Energético , Encefalinas/metabolismo , Locus Cerúleo/citologia , Locus Cerúleo/metabolismo , Locus Cerúleo/fisiologia , Camundongos , Neurônios/metabolismo , Neurônios/fisiologia , Núcleos Parabraquiais/citologia , Núcleos Parabraquiais/metabolismo , Núcleos Parabraquiais/fisiologia , Núcleo Hipotalâmico Paraventricular/metabolismo , Núcleo Hipotalâmico Paraventricular/fisiologia , Precursores de Proteínas/metabolismo , Receptor Tipo 4 de Melanocortina/metabolismo , Proteínas Repressoras/metabolismo
7.
J Clin Endocrinol Metab ; 103(7): 2601-2612, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29726959

RESUMO

Context: The hypothalamic melanocortin 4 receptor (MC4R) pathway serves a critical role in regulating body weight. Loss of function (LoF) mutations in the MC4R pathway, including mutations in the pro-opiomelanocortin (POMC), prohormone convertase 1 (PCSK1), leptin receptor (LEPR), or MC4R genes, have been shown to cause early-onset severe obesity. Methods: Through a comprehensive epidemiological analysis of known and predicted LoF variants in the POMC, PCSK1, and LEPR genes, we sought to estimate the number of US individuals with biallelic MC4R pathway LoF variants. Results: We predict ~650 α-melanocyte-stimulating hormone (MSH)/POMC, 8500 PCSK1, and 3600 LEPR homozygous and compound heterozygous individuals in the United States, cumulatively enumerating >12,800 MC4R pathway-deficient obese patients. Few of these variants have been genetically diagnosed to date. These estimates increase when we include a small subset of less rare variants: ß-MSH/POMC,PCSK1 N221D, and a PCSK1 LoF variant (T640A). To further define the MC4R pathway and its potential impact on obesity, we tested associations between body mass index (BMI) and LoF mutation burden in the POMC, PCSK1, and LEPR genes in various populations. We show that the cumulative allele burden in individuals with two or more LoF alleles in one or more genes in the MC4R pathway are predisposed to a higher BMI than noncarriers or heterozygous LoF carriers with a defect in only one gene. Conclusions: Our analysis represents a genetically rationalized study of the hypothalamic MC4R pathway aimed at genetic patient stratification to determine which obese subpopulations should be studied to elucidate MC4R agonist (e.g., setmelanotide) treatment responsiveness.


Assuntos
Mutação com Perda de Função/genética , Obesidade/epidemiologia , Obesidade/genética , Receptor Tipo 4 de Melanocortina/genética , Transdução de Sinais/genética , Alelos , Fármacos Antiobesidade/farmacologia , Índice de Massa Corporal , Feminino , Heterozigoto , Homozigoto , Humanos , Masculino , Obesidade/tratamento farmacológico , Pró-Opiomelanocortina/genética , Pró-Proteína Convertase 1/genética , Receptor Tipo 4 de Melanocortina/agonistas , Receptores para Leptina/genética , Estados Unidos/epidemiologia , alfa-MSH/análogos & derivados , alfa-MSH/farmacologia
8.
Mol Brain ; 9(1): 95, 2016 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-27931246

RESUMO

Alternate splicing of serotonin (5-hydroxytryptamine; 5-HT) 2C receptor (5-HT2CR) pre-RNA is negatively regulated by the small nucleolar RNA, Snord115, loss of which is observed in nearly all individuals with Prader-Willi Syndrome (PWS), a multigenic disorder characterised by hyperphagia and obesity. Given the role of the 5-HT2CR in the regulation of ingestive behaviour we investigated the pathophysiological implications of Snord115 deficiency on 5-HT2CR regulated appetite in a genotypically relevant PWS mouse model (PWS-IC). Specifically, we demonstrate that loss of Snord115 expression is associated with increased levels of hypothalamic truncated 5-HT2CR pre-mRNA. The 5-HT2CR promotes appetite suppression via engagement of the central melanocortin system. Pro-opiomelancortin (Pomc) mRNA levels within the arcuate nucleus of the hypothalamus (ARC) were reduced in PWS-IC mice. We then went on to assess the functional consequences of these molecular changes, demonstrating that PWS-IC mice are unresponsive to an anorectic doses of a 5-HT2CR agonist and that this is associated with attenuated activation of POMC neurons within the ARC. These data provide new insight into the significance of Htr2c pre-mRNA processing to the physiological regulation of appetite and potentially the pathological manifestation of hyperphagia in PWS. Furthermore, these findings have translational relevance for individuals with PWS who may seek to control appetite with another 5-HT2CR agonist, the new obesity treatment lorcaserin.


Assuntos
Processamento Alternativo/genética , Apetite/genética , Síndrome de Prader-Willi/genética , Receptor 5-HT2C de Serotonina/genética , Animais , Anorexia/genética , Anorexia/patologia , Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Núcleo Arqueado do Hipotálamo/metabolismo , Núcleo Arqueado do Hipotálamo/patologia , Sequência de Bases , Modelos Animais de Doenças , Comportamento Alimentar , Camundongos , Proteínas Mutantes/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Síndrome de Prader-Willi/patologia , Pró-Opiomelanocortina/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Pirazinas/farmacologia , Quinoxalinas/farmacologia , Receptor 5-HT2C de Serotonina/metabolismo , Agonistas do Receptor 5-HT2 de Serotonina/farmacologia
9.
Nat Neurosci ; 19(12): 1628-1635, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27643429

RESUMO

Agouti-related peptide (AgRP) neurons of the arcuate nucleus of the hypothalamus (ARC) promote homeostatic feeding at times of caloric insufficiency, yet they are rapidly suppressed by food-related sensory cues before ingestion. Here we identify a highly selective inhibitory afferent to AgRP neurons that serves as a neural determinant of this rapid modulation. Specifically, GABAergic projections arising from the ventral compartment of the dorsomedial nucleus of the hypothalamus (vDMH) contribute to the preconsummatory modulation of ARCAgRP neurons. In a manner reciprocal to ARCAgRP neurons, ARC-projecting leptin receptor-expressing GABAergic vDMH neurons exhibit rapid activation upon availability of food that additionally reflects the relative value of the food. Thus, leptin receptor-expressing GABAergic vDMH neurons form part of the sensory network that relays real-time information about the nature and availability of food to dynamically modulate ARCAgRP neuron activity and feeding behavior.


Assuntos
Proteína Relacionada com Agouti/metabolismo , Núcleo Arqueado do Hipotálamo/metabolismo , Neurônios GABAérgicos/metabolismo , Animais , Comportamento Alimentar , Camundongos , Neuropeptídeo Y/metabolismo , Receptores para Leptina/metabolismo , Sensação/fisiologia
10.
Mol Metab ; 5(3): 245-252, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26977396

RESUMO

OBJECTIVE: Obesity is one of the primary healthcare challenges of the 21st century. Signals relaying information regarding energy needs are integrated within the brain to influence body weight. Central among these integration nodes are the brain pro-opiomelanocortin (POMC) peptides, perturbations of which disrupt energy balance and promote severe obesity. However, POMC neurons are neurochemically diverse and the crucial source of POMC peptides that regulate energy homeostasis and body weight remains to be fully clarified. METHODS: Given that a 5-hydroxytryptamine 2c receptor (5-HT2CR) agonist is a current obesity medication and 5-HT2CR agonist's effects on appetite are primarily mediated via POMC neurons, we hypothesized that a critical source of POMC regulating food intake and body weight is specifically synthesized in cells containing 5-HT2CRs. To exclusively manipulate Pomc synthesis only within 5-HT2CR containing cells, we generated a novel 5-HT 2C R (CRE) mouse line and intercrossed it with Cre recombinase-dependent and hypothalamic specific reactivatable Pomc (NEO) mice to restrict Pomc synthesis to the subset of hypothalamic cells containing 5-HT2CRs. This provided a means to clarify the specific contribution of a defined subgroup of POMC peptides in energy balance and body weight. RESULTS: Here we transform genetically programed obese and hyperinsulinemic male mice lacking hypothalamic Pomc with increased appetite, reduced physical activity and compromised brown adipose tissue (BAT) into lean, healthy mice via targeted restoration of Pomc function only within 5-HT2CR expressing cells. Remarkably, the same metabolic transformation does not occur in females, who despite corrected feeding behavior and normalized insulin levels remain physically inactive, have lower energy expenditure, compromised BAT and develop obesity. CONCLUSIONS: These data provide support for the functional heterogeneity of hypothalamic POMC neurons, revealing that Pomc expression within 5-HT2CR expressing neurons is sufficient to regulate energy intake and insulin sensitivity in male and female mice. However, an unexpected sex difference in the function of this subset of POMC neurons was identified with regard to energy expenditure. We reveal that a large sex difference in physical activity, energy expenditure and the development of obesity is driven by this subpopulation, which constitutes approximately 40% of all POMC neurons in the hypothalamic arcuate nucleus. This may have broad implications for strategies utilized to combat obesity, which at present largely ignore the sex of the obese individual.

11.
Nat Neurosci ; 19(2): 206-19, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26814590

RESUMO

The melanocortin system provides a conceptual blueprint for the central control of energetic state. Defined by four principal molecular components--two antagonistically acting ligands and two cognate receptors--this phylogenetically conserved system serves as a prototype for hierarchical energy balance regulation. Over the last decade the application of conditional genetic techniques has facilitated the neuroanatomical dissection of the melanocortinergic network and identified the specific neural substrates and circuits that underscore the regulation of feeding behavior, energy expenditure, glucose homeostasis and autonomic outflow. In this regard, the melanocortin-4 receptor is a critical coordinator of mammalian energy homeostasis and body weight. Drawing on recent advances in neuroscience and genetic technologies, we consider the structure and function of the melanocortin-4 receptor circuitry and its role in energy homeostasis.


Assuntos
Metabolismo Energético/genética , Metabolismo Energético/fisiologia , Receptor Tipo 4 de Melanocortina/genética , Receptor Tipo 4 de Melanocortina/fisiologia , Animais , Peso Corporal/fisiologia , Ingestão de Energia/genética , Ingestão de Energia/fisiologia , Comportamento Alimentar/fisiologia , Homeostase/genética , Homeostase/fisiologia , Humanos
12.
Dis Model Mech ; 9(4): 401-12, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26769798

RESUMO

Although obesity is a global epidemic, the physiological mechanisms involved are not well understood. Recent advances reveal that susceptibility to obesity can be programmed by maternal and neonatal nutrition. Specifically, a maternal low-protein diet during pregnancy causes decreased intrauterine growth, rapid postnatal catch-up growth and an increased risk for diet-induced obesity. Given that the synthesis of the neurotransmitter 5-hydroxytryptamine (5-HT) is nutritionally regulated and 5-HT is a trophic factor, we hypothesised that maternal diet influences fetal 5-HT exposure, which then influences development of the central appetite network and the subsequent efficacy of 5-HT to control energy balance in later life. Consistent with our hypothesis, pregnant rats fed a low-protein diet exhibited elevated serum levels of 5-HT, which was also evident in the placenta and fetal brains at embryonic day 16.5. This increase was associated with reduced levels of 5-HT2CR, the primary 5-HT receptor influencing appetite, in the fetal, neonatal and adult hypothalamus. As expected, a reduction of 5-HT2CR was associated with impaired sensitivity to 5-HT-mediated appetite suppression in adulthood. 5-HT primarily achieves effects on appetite by 5-HT2CR stimulation of pro-opiomelanocortin (POMC) peptides within the arcuate nucleus of the hypothalamus (ARC). We show that 5-HT2ARs are also anatomically positioned to influence the activity of ARC POMC neurons and that mRNA encoding 5-HT2AR is increased in the hypothalamus ofin uterogrowth-restricted offspring that underwent rapid postnatal catch-up growth. Furthermore, these animals at 3 months of age are more sensitive to appetite suppression induced by 5-HT2AR agonists. These findings not only reveal a 5-HT-mediated mechanism underlying the programming of susceptibility to obesity, but also provide a promising means to correct it, by treatment with a 5-HT2AR agonist.


Assuntos
Crescimento e Desenvolvimento , Hipotálamo/metabolismo , Receptor 5-HT2A de Serotonina/metabolismo , Receptor 5-HT2C de Serotonina/metabolismo , Animais , Animais Recém-Nascidos , Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Núcleo Arqueado do Hipotálamo/metabolismo , Peso Corporal/efeitos dos fármacos , Proteínas Alimentares/farmacologia , Comportamento Alimentar/efeitos dos fármacos , Feminino , Fenfluramina/administração & dosagem , Fenfluramina/farmacologia , Feto/efeitos dos fármacos , Feto/metabolismo , Crescimento e Desenvolvimento/efeitos dos fármacos , Hipotálamo/anatomia & histologia , Hipotálamo/efeitos dos fármacos , Hipotálamo/crescimento & desenvolvimento , Microdissecção e Captura a Laser , Masculino , Neurônios/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Tamanho do Órgão/efeitos dos fármacos , Gravidez , Ratos Wistar , Reprodutibilidade dos Testes , Serotonina/metabolismo , Fatores de Tempo , Triptofano/metabolismo
13.
Am J Physiol Regul Integr Comp Physiol ; 310(1): R41-54, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26491097

RESUMO

The parabrachial nucleus is important for thermoregulation because it relays skin temperature information from the spinal cord to the hypothalamus. Prior work in rats localized thermosensory relay neurons to its lateral subdivision (LPB), but the genetic and neurochemical identity of these neurons remains unknown. To determine the identity of LPB thermosensory neurons, we exposed mice to a warm (36°C) or cool (4°C) ambient temperature. Each condition activated neurons in distinct LPB subregions that receive input from the spinal cord. Most c-Fos+ neurons in these LPB subregions expressed the transcription factor marker FoxP2. Consistent with prior evidence that LPB thermosensory relay neurons are glutamatergic, all FoxP2+ neurons in these subregions colocalized with green fluorescent protein (GFP) in reporter mice for Vglut2, but not for Vgat. Prodynorphin (Pdyn)-expressing neurons were identified using a GFP reporter mouse and formed a caudal subset of LPB FoxP2+ neurons, primarily in the dorsal lateral subnucleus (PBdL). Warm exposure activated many FoxP2+ neurons within PBdL. Half of the c-Fos+ neurons in PBdL were Pdyn+, and most of these project into the preoptic area. Cool exposure activated a separate FoxP2+ cluster of neurons in the far-rostral LPB, which we named the rostral-to-external lateral subnucleus (PBreL). These findings improve our understanding of LPB organization and reveal that Pdyn-IRES-Cre mice provide genetic access to warm-activated, FoxP2+ glutamatergic neurons in PBdL, many of which project to the hypothalamus.


Assuntos
Febre/metabolismo , Hipotermia/metabolismo , Neurônios/metabolismo , Núcleos Parabraquiais/metabolismo , Temperatura Cutânea , Sensação Térmica , Animais , Modelos Animais de Doenças , Encefalinas/genética , Encefalinas/metabolismo , Febre/genética , Febre/fisiopatologia , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica , Genes Reporter , Genótipo , Ácido Glutâmico/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hipotermia/genética , Hipotermia/fisiopatologia , Integrases/genética , Integrases/metabolismo , Sítios Internos de Entrada Ribossomal , Masculino , Camundongos Transgênicos , Técnicas de Rastreamento Neuroanatômico , Núcleos Parabraquiais/fisiopatologia , Fenótipo , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Repressoras/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo
14.
Eur J Neurosci ; 42(4): 2105-13, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26040449

RESUMO

Prader-Willi syndrome (PWS) is a neurodevelopmental disorder caused by deletion or inactivation of paternally expressed imprinted genes on human chromosome 15q11-q13, the most recognised feature of which is hyperphagia. This is thought to arise as a consequence of abnormalities in both the physiological drive for food and the rewarding properties of food. Although a number of mouse models for PWS exist, the underlying variables dictating maladaptive feeding remain unknown. Here, feeding behaviour in a mouse model in which the imprinting centre (IC) of the syntenic PWS interval has been deleted (PWS(ICdel) mice) is characterised. It is demonstrated that PWS(ICdel) mice show hyperghrelinaemia and increased consumption of food both following overnight fasting and when made more palatable with sucrose. However, hyperphagia in PWS(ICdel) mice was not accompanied by any changes in reactivity to the hedonic properties of palatable food (sucrose or saccharin), as measured by lick-cluster size. Nevertheless, overall consumption by PWS(ICdel) mice for non-caloric saccharin in the licking test was significantly reduced. Combined with converging findings from a continuous reinforcement schedule, these data indicate that PWS(ICdel) mice show a marked heightened sensitivity to the calorific value of food. Overall, these data indicate that any impact of the rewarding properties of food on the hyperphagia seen in PWS(ICdel) mice is driven primarily by calorie content and is unlikely to involve hedonic processes. This has important implications for understanding the neural systems underlying the feeding phenotype of PWS and the contribution of imprinted genes to abnormal feeding behaviour more generally.


Assuntos
Ansiedade/fisiopatologia , Ingestão de Energia/fisiologia , Hiperfagia/etiologia , Motivação/fisiologia , Síndrome de Prader-Willi/complicações , Animais , Apatia/fisiologia , Condicionamento Operante , Modelos Animais de Doenças , Ingestão de Alimentos/genética , Ingestão de Energia/genética , Feminino , Preferências Alimentares/fisiologia , Grelina/sangue , Hiperfagia/genética , Masculino , Camundongos , Camundongos Transgênicos , Motivação/genética , Fenótipo , Síndrome de Prader-Willi/sangue , Síndrome de Prader-Willi/genética
15.
Nat Neurosci ; 18(6): 863-71, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25915476

RESUMO

Pro-opiomelanocortin (POMC)- and agouti-related peptide (AgRP)-expressing neurons of the arcuate nucleus of the hypothalamus (ARC) are oppositely regulated by caloric depletion and coordinately stimulate and inhibit homeostatic satiety, respectively. This bimodality is principally underscored by the antagonistic actions of these ligands at downstream melanocortin-4 receptors (MC4R) in the paraventricular nucleus of the hypothalamus (PVH). Although this population is critical to energy balance, the underlying neural circuitry remains unknown. Using mice expressing Cre recombinase in MC4R neurons, we demonstrate bidirectional control of feeding following real-time activation and inhibition of PVH(MC4R) neurons and further identify these cells as a functional exponent of ARC(AgRP) neuron-driven hunger. Moreover, we reveal this function to be mediated by a PVH(MC4R)→lateral parabrachial nucleus (LPBN) pathway. Activation of this circuit encodes positive valence, but only in calorically depleted mice. Thus, the satiating and appetitive nature of PVH(MC4R)→LPBN neurons supports the principles of drive reduction and highlights this circuit as a promising target for antiobesity drug development.


Assuntos
Apetite/efeitos dos fármacos , Receptor Tipo 4 de Melanocortina/antagonistas & inibidores , Proteína Relacionada com Agouti/fisiologia , Animais , Fármacos Antiobesidade/farmacologia , Metabolismo Energético/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Privação de Alimentos , Preferências Alimentares/efeitos dos fármacos , Fome/fisiologia , Camundongos , Vias Neurais/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/fisiologia , Pró-Opiomelanocortina/fisiologia , Saciação/fisiologia
16.
Cell Metab ; 20(6): 1030-7, 2014 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-25470549

RESUMO

Hypoglycemia engenders an autonomically mediated counterregulatory (CR)-response that stimulates endogenous glucose production to maintain concentrations within an appropriate physiological range. Although the involvement of the brain in preserving normoglycemia has been established, the neurocircuitry underlying centrally mediated CR-responses remains unclear. Here we demonstrate that lateral parabrachial nucleus cholecystokinin (CCK(LPBN)) neurons are a population of glucose-sensing cells (glucose inhibited) with counterregulatory capacity. Furthermore, we reveal that steroidogenic-factor 1 (SF1)-expressing neurons of the ventromedial nucleus of the hypothalamus (SF1(VMH)) are the specific target of CCK(LPBN) glucoregulatory neurons. This discrete CCK(LPBN)→SF1(VMH) neurocircuit is both necessary and sufficient for the induction of CR-responses. Together, these data identify CCK(LPBN) neurons, and specifically CCK neuropeptide, as glucoregulatory and provide significant insight into the homeostatic mechanisms controlling CR-responses to hypoglycemia.


Assuntos
Colecistocinina/metabolismo , Hipoglicemia/metabolismo , Hipotálamo/metabolismo , Animais , Glicemia/metabolismo , Masculino , Camundongos , Núcleos Parabraquiais/citologia
17.
Nat Neurosci ; 17(12): 1744-1750, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25383904

RESUMO

Hypoglycemia initiates the counter-regulatory response (CRR), in which the sympathetic nervous system, glucagon and glucocorticoids restore glucose to appropriate concentrations. During starvation, low leptin levels restrain energy utilization, enhancing long-term survival. To ensure short-term survival during hypoglycemia in fasted animals, the CRR must overcome this energy-sparing program and nutrient depletion. Here we identify in mice a previously unrecognized role for leptin and a population of leptin-regulated neurons that modulate the CRR to meet these challenges. Hypoglycemia activates neurons of the parabrachial nucleus (PBN) that coexpress leptin receptor (LepRb) and cholecystokinin (CCK) (PBN LepRb(CCK) neurons), which project to the ventromedial hypothalamic nucleus. Leptin inhibits these cells, and Cck(cre)-mediated ablation of LepRb enhances the CRR. Inhibition of PBN LepRb cells blunts the CRR, whereas their activation mimics the CRR in a CCK-dependent manner. PBN LepRb(CCK) neurons are a crucial component of the CRR system and may be a therapeutic target in hypoglycemia.


Assuntos
Glicemia/metabolismo , Metabolismo Energético/fisiologia , Hipoglicemia/metabolismo , Leptina/farmacologia , Neurônios/metabolismo , Núcleos Parabraquiais/metabolismo , Animais , Glicemia/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Feminino , Leptina/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/efeitos dos fármacos , Técnicas de Cultura de Órgãos , Núcleos Parabraquiais/efeitos dos fármacos , Receptores para Leptina/metabolismo
18.
Endocrinology ; 155(10): 3732-8, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25051442

RESUMO

The phenomenon commonly described as the middle-age spread is the result of elevated adiposity accumulation throughout adulthood until late middle-age. It is a clinical imperative to gain a greater understanding of the underpinnings of age-dependent obesity and, in turn, how these mechanisms may impact the efficacy of obesity treatments. In particular, both obesity and aging are associated with rewiring of a principal brain pathway modulating energy homeostasis, promoting reduced activity of satiety pro-opiomelanocortin (POMC) neurons within the arcuate nucleus of the hypothalamus (ARC). Using a selective ARC-deficient POMC mouse line, here we report that former obesity medications augmenting endogenous 5-hydroxytryptamine (5-HT) activity d-fenfluramine and sibutramine require ARC POMC neurons to elicit therapeutic appetite-suppressive effects. We next investigated whether age-related diminished ARC POMC activity therefore impacts the potency of 5-HT obesity pharmacotherapies, lorcaserin, d-fenfluramine, and sibutramine and report that all compounds reduced food intake to a comparable extent in both chow-fed young lean (3-5 months old) and middle-aged obese (12-14 months old) male and female mice. We provide a mechanism through which 5-HT anorectic potency is maintained with age, via preserved 5-HT-POMC appetitive anatomical machinery. Specifically, the abundance and signaling of the primary 5-HT receptor influencing appetite via POMC activation, the 5-HT2CR, is not perturbed with age. These data reveal that although 5-HT obesity medications require ARC POMC neurons to achieve appetitive effects, the anorectic efficacy is maintained with aging, findings of clinical significance to the global aging obese population.


Assuntos
Envelhecimento/metabolismo , Fenfluramina/uso terapêutico , Obesidade/tratamento farmacológico , Pró-Opiomelanocortina/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/uso terapêutico , Serotonina/metabolismo , Envelhecimento/efeitos dos fármacos , Animais , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pró-Opiomelanocortina/genética , Resultado do Tratamento
19.
PLoS Biol ; 12(2): e1001799, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24586114

RESUMO

Developmental programming links growth in early life with health status in adulthood. Although environmental factors such as maternal diet can influence the growth and adult health status of offspring, the genetic influences on this process are poorly understood. Using the mouse as a model, we identify the imprinted gene Grb10 as a mediator of nutrient supply and demand in the postnatal period. The combined actions of Grb10 expressed in the mother, controlling supply, and Grb10 expressed in the offspring, controlling demand, jointly regulate offspring growth. Furthermore, Grb10 determines the proportions of lean and fat tissue during development, thereby influencing energy homeostasis in the adult. Most strikingly, we show that the development of normal lean/fat proportions depends on the combined effects of Grb10 expressed in the mother, which has the greater effect on offspring adiposity, and Grb10 expressed in the offspring, which influences lean mass. These distinct functions of Grb10 in mother and pup act complementarily, which is consistent with a coadaptation model of imprinting evolution, a model predicted but for which there is limited experimental evidence. In addition, our findings identify Grb10 as a key genetic component of developmental programming, and highlight the need for a better understanding of mother-offspring interactions at the genetic level in predicting adult disease risk.


Assuntos
Tamanho Corporal/genética , Proteína Adaptadora GRB10/genética , Animais , Feminino , Proteína Adaptadora GRB10/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Impressão Genômica , Carioferinas/fisiologia , Lactação/genética , Camundongos , Camundongos Knockout , Receptores Citoplasmáticos e Nucleares/fisiologia , Fator de Transcrição STAT5/fisiologia , Proteína Exportina 1
20.
Behav Brain Res ; 266: 201-6, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24566060

RESUMO

The central 5-hydroxytryptamine (5-HT; serotonin) system is well established as an important regulator of appetite and continues to remain a focus of obesity research. While much emphasis has focussed on the 5-HT(2C) receptor (5-HT(2C)R) in 5-HT's anorectic effect, pharmacological manipulation of the 5-HT6 receptor (5-HT6R) also reduces appetite and body weight and may be amenable to obesity treatment. However, the neurological circuits that underlie 5-HT6R-induced hypophagia remain to be identified. Using c-fos immunoreactivity (FOS-IR) as a marker of neuronal activation, here we mapped the neuroanatomical targets activated by an anorectic dose of the 5-HT6R antagonist SB-399885 throughout the brain. Furthermore, we quantified SB-399855 activated cells within brain appetitive nuclei, the hypothalamus, dorsal raphe nucleus (DRN) and nucleus of the solitary tract (NTS). Our results reveal that 5-HT6R antagonist-induced hypophagia is associated with significantly increased neuronal activation in two nuclei with an established role in the central control of appetite, the paraventricular nucleus of the hypothalamus (PVH) and the NTS. In contrast, no changes in FOS-IR were observed between treatment groups within other hypothalamic nuclei or DRN. The data presented here provide a first insight into the neural circuitry underlying 5-HT6R antagonist-induced appetite suppression and highlight the PVH and NTS in the coordination of 5-HT6R hypophagia.


Assuntos
Encéfalo , Transtornos da Alimentação e da Ingestão de Alimentos/induzido quimicamente , Transtornos da Alimentação e da Ingestão de Alimentos/patologia , Piperazinas/toxicidade , Receptores de Serotonina/metabolismo , Antagonistas da Serotonina/toxicidade , Sulfonamidas/toxicidade , Animais , Apetite/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Ingestão de Alimentos/efeitos dos fármacos , Masculino , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...