Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 11(2): 2526-2534, 2019 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-30575394

RESUMO

Advances in extreme ultraviolet (EUV) photolithography require the development of next-generation resists that allow high-volume nanomanufacturing with a single nanometer patterning resolution. Organotin-based photoresists have demonstrated nanopatterning with high resolution, high sensitivity, and low-line edge roughness. However, very little is known regarding the detailed reaction mechanisms that lead to radiation-induced solubility transitions. In this study, we investigate the interaction of soft X-ray radiation with organotin clusters to better understand radiation-induced chemistries associated with EUV lithography. Butyltin Keggin clusters (ß-NaSn13) were used as a model organotin photoresist, and characterization was performed using ambient-pressure X-ray photoelectron spectroscopy. The changes in relative atomic concentrations and associated chemical states in ß-NaSn13 resists were evaluated after exposure to radiation for a range of ambient conditions and photon energies. A significant reduction in the C 1s signal versus exposure time was observed, which corresponds to the radiation-induced homolytic cleavage of the butyltin bond in the ß-NaSn13 clusters. To improve the resist sensitivity, we evaluated the effect of oxygen partial pressure during radiation exposures. We found that both photon energy and oxygen partial pressure had a strong influence on the butyl group desorption rate. These studies advance the understanding of radiation-induced processes in ß-NaSn13 photoresists and provide mechanistic insights for EUV photolithography.

2.
J Chem Phys ; 146(5): 054704, 2017 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-28178800

RESUMO

Monolayer to multilayer ultrathin films of the ionic liquid (IL) 1-methyl-3-octylimidazolium bis(trifluoromethylsulfonyl)amide have been prepared on Au(111) and Cu(100) surfaces using physical vapor deposition. The ion-surface interactions are studied using a combination of scanning tunnel microscopy, as well as ultraviolet and x-ray photoemission spectroscopies. It is found that the IL does not decompose at the surface of the metals, and that the IL interaction with the Cu(100) surface is much stronger than with the Au(111) surface. As a consequence, STM imaging at room temperature results in more stable imaging at the monolayer coverage on Cu(100) than on Au(111), and work function measurements indicate a large interface dipole upon deposition of a monolayer of IL on Cu. Additional IL depositions on the two surfaces result in two distinct behaviors for the IL core levels: a gradual energy shift of the core levels on Au and a set of two well defined monolayer and multilayer core level components found at fixed energies on Cu, due to the formation of a tightly bound monolayer. Finally, it is proposed that the particularly strong cation-Cu interaction leads to stabilization of the anion and prevents its decomposition at the surface of Cu(100).

3.
ACS Appl Mater Interfaces ; 8(1): 667-72, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26671578

RESUMO

A variety of metal oxide films (InGaOx, AlOx, "HafSOx") prepared from aqueous solutions were found to have non-uniform electron density profiles using X-ray reflectivity. The inhomogeneity in HafSOx films (Hf(OH)4-2x-2y(O2)x(SO4)y·zH2O), which are currently under investigation as inorganic resists, were studied in more detail by high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and medium-energy ion scattering (MEIS). The HAADF-STEM images show a greater concentration of heavy atoms near the surface of a single-layer film. MEIS data confirm the aggregation of Hf at the film surface. The denser "crust" layer in HafSOx films may directly impact patterning resolution. More generally, the phenomenon of surface-layer inhomogeneity in solution-deposited films likely influences film properties and may have consequences in other thin-film systems under investigation as resists, dielectrics, and thin-film transistor components.

4.
ACS Appl Mater Interfaces ; 6(4): 2917-21, 2014 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-24502280

RESUMO

High-resolution transmission electron microscopy (TEM) imaging and energy-dispersive X-ray spectroscopy (EDS) chemical mapping have been used to examine key processing steps that enable sub-20-nm lithographic patterning of the material Hf(OH)4-2x-2y(O2)x(SO4)y·qH2O (HafSOx). Results reveal that blanket films are smooth and chemically homogeneous. Upon exposure with an electron beam, the films become insoluble in aqueous tetramethylammonium hydroxide [TMAH(aq)]. The mobility of sulfate in the exposed films, however, remains high, because it is readily exchanged with hydroxide from the TMAH(aq) solution. Annealing the films after soaking in TMAH(aq) results in the formation of a dense hafnium hydroxide oxide material that can be converted to crystalline HfO2 with a high electron-beam dose. A series of 9 nm lines is written with variable spacing to investigate the cross-sectional shape of the patterned lines and the residual material found between them.

5.
ChemSusChem ; 3(4): 471-5, 2010 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-20209512

RESUMO

By using a nondestructive, ultrasensitive, fluorescence kinetic technique, we measure in situ the photochemical energy conversion efficiency and electron transfer kinetics on the acceptor side of histidine-tagged photosystem II core complexes tethered to gold surfaces. Atomic force microscopy images coupled with Rutherford backscattering spectroscopy measurements further allow us to assess the quality, number of layers, and surface density of the reaction center films. Based on these measurements, we calculate that the theoretical photoelectronic current density available for an ideal monolayer of core complexes is 43 microA cm(-2) at a photon flux density of 2000 micromol quanta m(-2) s(-1) between 365 and 750 nm. While this current density is approximately two orders of magnitude lower than the best organic photovoltaic cells (for an equivalent area), it provides an indication for future improvement strategies. The efficiency could be improved by increasing the optical cross section, by tuning the electron transfer physics between the core complexes and the metal surface, and by developing a multilayer structure, thereby making biomimetic photoelectron devices for hydrogen generation and chemical sensing more viable.


Assuntos
Ouro/química , Processos Fotoquímicos , Complexo de Proteína do Fotossistema II/química , Cianobactérias/enzimologia , Transporte de Elétrons , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Cinética , Complexo de Proteína do Fotossistema II/metabolismo , Espectrometria de Fluorescência , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...