Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
1.
Arch Bronconeumol ; 2024 May 06.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-38755052

RESUMO

Lung cancer remains the leading cause of cancer-related deaths worldwide. According to the American Cancer Society (ACS), it ranks as the second most prevalent type of cancer globally. Recent findings have highlighted bidirectional gut-lung interactions, known as the gut-lung axis, in the pathophysiology of lung cancer. Probiotics are live microorganisms that boost host immunity when consumed adequately. The immunoregulatory mechanisms of probiotics are thought to operate through the generation of various metabolites that impact both the gut and distant organs (e.g., the lungs) through blood. Several randomized controlled trials have highlighted the pivotal role of probiotics in gut health especially for the prevention and treatment of malignancies, with a specific emphasis on lung cancer. Current research indicates that probiotic supplementation positively affects patients, leading to a suppression in cancer symptoms and a shortened disease course. While clinical trials validate the therapeutic benefits of probiotics, their precise mechanism of action remains unclear. This narrative review aims to provide a comprehensive overview of the present landscape of probiotics in the management of lung cancer.

2.
Small ; : e2401269, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38687141

RESUMO

Structural design of 2D conjugated porous organic polymer films (2D CPOPs), by tuning linkage chemistries and pore sizes, provides great adaptability for various applications, including membrane separation. Here, four free-standing 2D CPOP films of imine- or hydrazone-linked polymers (ILP/HLP) in combination with benzene (B-ILP/HLP) and triphenylbenzene (TPB-ILP/HLP) aromatic cores are synthesized. The anisotropic disordered films, composed of polymeric layered structures, can be exfoliated into ultrathin 2D-nanosheets with layer-dependent electrical properties. The bulk CPOP films exhibit structure-dependent optical properties, triboelectric nanogenerator output, and robust mechanical properties, rivaling previously reported 2D polymers and porous materials. The exfoliation energies of the 2D CPOPs and their mechanical behavior at the molecular level are investigated using density function theory (DFT) and molecular dynamics (MD) simulations, respectively. Exploiting the structural tunability, the comparative organic solvent nanofiltration (OSN) performance of six membranes having different pore sizes and linkages to yield valuable trends in molecular weight selectivity is investigated. Interestingly, the OSN performances follow the predicted transport modeling values based on theoretical pore size calculations, signifying the existence of permanent porosity in these materials. The membranes exhibit excellent stability in organic solvents at high pressures devoid of any structural deformations, revealing their potential in practical OSN applications.

3.
Am J Med ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38485111

RESUMO

BACKGROUND: The world is currently grappling with the potentially life-threatening coronavirus disease 2019 (COVID-19), marking it as the most severe health crisis in the modern era. COVID-19 has led to a pandemic, with the World Health Organization (WHO) predicting that individuals with diabetes are at a higher risk of contracting the virus compared to the general population. This review aims to provide a practical summary of the long-term impacts of COVID-19 on patients with diabetes. Specifically, it focuses on the effects of SARS-CoV-2 on different types of diabetic patients, the associated mortality rate, the underlying mechanisms, related complications, and the role of vitamin D and zinc in therapeutic and preventive approaches. METHODS: Relevant literature was identified through searches on PubMed, Web of Science, and Science Direct in English, up to April 2023. RESULTS: COVID-19 can lead to distressing symptoms and pose a significant challenge for individuals living with diabetes. Older individuals and those with pre-existing conditions such as diabetes, coronary illness, and asthma are more susceptible to COVID-19 infection. Managing COVID-19 in individuals with diabetes presents challenges, as it not only complicates the fight against the infection but also potentially prolongs the recovery time. Moreover, the virus may thrive in individuals with high blood glucose levels. Various therapeutic approaches, including antidiabetic drugs, are available to help prevent COVID-19 in diabetic patients. CONCLUSIONS: Diabetes increases the morbidity and mortality risk for patients with COVID-19. Efforts are globally underway to explore therapeutic interventions aimed at reducing the impact of diabetes on COVID-19.

4.
Drug Discov Today ; 29(4): 103921, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38382867

RESUMO

Postbiotics, the next generation of probiotics, are extracts that are free of living and nonviable bacteria and show strong modulatory effects on the gut flora. Examples include vitamin B12, vitamin K, folate, lipopolysaccharides, enzymes, and short-chain fatty acids (SCFAs), representing a subset of essential nutrients commonly found in the human diet. Postbiotics have been observed to demonstrate antiobesity and antidiabetic effects through a variety of mechanisms. These pathways primarily involve an elevation in energy expenditure, a decrease in the formation and differentiation of adipocytes and food intake, modification of lipid and carbohydrate absorption and metabolism, and regulation of gut dysbiosis. Based on these above effects and mechanisms, the use of postbiotics can be considered as potential strategy for the treatment of metabolic disorders.


Assuntos
Doenças Metabólicas , Probióticos , Humanos , Probióticos/uso terapêutico , Ácidos Graxos Voláteis , Bactérias/metabolismo , Doenças Metabólicas/tratamento farmacológico , Metabolismo Energético
5.
Heliyon ; 10(4): e25754, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38370192

RESUMO

The impact of the coronavirus disease 2019 (COVID-19) pandemic on the everyday livelihood of people has been monumental and unparalleled. Although the pandemic has vastly affected the global healthcare system, it has also been a platform to promote and develop pioneering applications based on autonomic artificial intelligence (AI) technology with therapeutic significance in combating the pandemic. Artificial intelligence has successfully demonstrated that it can reduce the probability of human-to-human infectivity of the virus through evaluation, analysis, and triangulation of existing data on the infectivity and spread of the virus. This review talks about the applications and significance of modern robotic and automated systems that may assist in spreading a pandemic. In addition, this study discusses intelligent wearable devices and how they could be helpful throughout the COVID-19 pandemic.

6.
Artigo em Inglês | MEDLINE | ID: mdl-38351688

RESUMO

Extracellular vesicles or exosomes, often known as EVs, have acquired significant attention in the investigations of traumatic brain injury (TBI) and have a distinct advantage in actively researching the fundamental mechanisms underlying various clinical symptoms and diagnosing the wide range of traumatic brain injury cases. The mesenchymal stem cells (MSCs) can produce and release exosomes, which offer therapeutic benefits. Exosomes are tiny membranous vesicles produced by various cellular entities originating from endosomes. Several studies have reported that administering MSC-derived exosomes through intravenous infusions improves neurological recovery and promotes neuroplasticity in rats with traumatic brain damage. The therapeutic advantages of exosomes can be attributed to the microRNAs (miRNAs), which are small non-coding regulatory RNAs that significantly impact the regulation of posttranscriptional genes. Exosome-based therapies, which do not involve cells, have lately gained interest as a potential breakthrough in enhancing neuroplasticity and accelerating neurological recovery for various brain injuries and neurodegenerative diseases. This article explores the benefits and drawbacks of exosome treatment for traumatic brain injury while emphasizing the latest advancements in this field with clinical significance.

7.
ACS Appl Mater Interfaces ; 16(2): 2726-2739, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38170672

RESUMO

Two-dimensional (2D) films of conjugated porous organic polymers (C-POPs) can translate the rich in-plane functionalities of conjugated frameworks into diverse optical and electronic applications while addressing the processability issues of their crystalline analogs for adaptable device architectures. However, the lack of facile single-step synthetic routes to obtain large-area high-quality films of 2D-C-POPs has limited their application possibilities so far. Here, we report the synthesis of four mechanically robust imine-linked 2D-C-POP free-standing films using a single-step fast condensation route that is scalable and tunable. The rigid covalently bonded 2D structures of the C-POP films offer high stability for volatile gas sensing in harsh environments while simultaneously enhancing site accessibility for gas molecules due to mesoporosity by structural design. Structurally, all films were composed of exfoliable layers of 2D polymeric nanosheets (NSs) that displayed anisotropy from disordered stacking, evinced by out-of-plane birefringent properties. The tunable in-plane conjugation, different nitrogen centers, and porous structures allow the films to act as ultraresponsive colorimetric sensors for acid sensing via reversible imine bond protonation. All the films could detect hydrogen chloride (HCl) gas down to 0.05 ppm, far exceeding the Occupational Safety and Health Administration's permissible exposure limit of 5 ppm with fast response time and good recyclability. Computational insights elucidated the effect of conjugation and tertiary nitrogen in the structures on the sensitivity and response time of the films. Furthermore, we exploited the exfoliated large 2D NSs and anisotropic optoelectronic properties of the films to adapt them into micro-optical and triboelectric devices to demonstrate their real-time sensing capabilities.

8.
Heliyon ; 10(1): e23810, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38226207

RESUMO

Ocular drug delivery presents a unique set of challenges owing to the complex anatomy and physiology of the eye. Processed excipients have emerged as crucial components in overcoming these challenges and improving the efficacy and safety of ocular drug delivery systems. This comprehensive overview examines the opportunities that processed excipients offer in enhancing drug delivery to the eye. By analyzing the current landscape, this review highlights the successful applications of processed excipients, such as micro- and nano-formulations, sustained-release systems, and targeted delivery strategies. Furthermore, this article delves into the bottlenecks that have impeded the widespread adoption of these excipients, including formulation stability, biocompatibility, regulatory constraints, and cost-effectiveness. Through a critical evaluation of existing research and industry practices, this review aims to provide insights into the potential avenues for innovation and development in ocular drug delivery, with a focus on addressing the existing challenges associated with processed excipients. This synthesis contributes to a deeper understanding of the promising role of processed excipients in improving ocular drug delivery systems and encourages further research and development in this rapidly evolving field.

10.
Artigo em Inglês | MEDLINE | ID: mdl-37904558

RESUMO

The food business makes extensive use of lipophilic bioactive substances derived from plants, such as phytosterols, antimicrobials, antioxidants, ω3 fatty acids, tastes, and countless other constituennts. The preponderance of these bioactive substances, nevertheless, is just about unsolvable in hydric solution and unbalanced at a particular eco-friendly provocation, such as sunlight, temperature, and oxygen, in construction, transference, storage, and employment, for example, icy, chilling, desiccation, warm air dealing out, or machine-driven agitation. According to this standpoint, there are high-tech hitches that must be resolved to inform functionality for the social figure due to the lipophilic bioactive dearth of solubilization, bioavailability, and permanency. This leads to failure in commercialization and quality enhancement. Nanotechnology can generally be used to manufacture nano-kinds of stuff like nano-emulsion, nanoparticles, nanostructured materials, and nanocomposites. The creation of functional foods has attracted a huge interest as our consideration of their affiliation with nourishment and human health has grown. There are still a number of problems that need to be fixed, such as finding useful substances, figuring out ideal intake amounts, and fashioning apt food conveyance systems in addition to product compositions. In several of these areas, new methods and materials developed through nanotechnology have the potential to offer fresh explanations. The present article provides a thorough examination of nanotechnologies employed in the development of functional foods. It outlines the current patterns and forthcoming outlooks of sophisticated nanomaterials in the food industry, with particular emphasis on their applications in processing, packaging, safety, and preservation. The utilization of nanotechnologies in the food industry can improve the "bioavailability, taste, texture, and consistency of food products". This is accomplished by manipulating the particle size, potential cluster formation, and surface charge of food nanomaterials. Furthermore, this paper examines the utilization of nano-delivery systems for administering nutraceuticals, the cooperative effects of nanomaterials in safeguarding food, and the implementation of nano-sensors in intelligent food packaging to monitor the quality of stored food. Additionally, the customary techniques employed for evaluating the influence of nanomaterials on biological systems are also addressed. This review gives a general synopsis of the newfangled possibilities and hitches for systems built on nanotechnology for the creation of functional foods in the future.

11.
Exp Eye Res ; 236: 109650, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37734426

RESUMO

Oxidative stress (OS) is a cytopathic outcome of excessively generated reactive oxygen species (ROS), down regulated antioxidant defense signaling pathways, and the imbalance between the produced radicals and their clearance. It plays a role in the genesis of several illnesses, especially hyperglycemia and its effects. Diabetic retinal illness, a micro vascular side effect of the condition, is the prime reason of diabetic related blindness. The OS (directly or indirectly) is associated with diabetic retinopathy (DR) and related consequences. The OS is responsible to induce and interfere the metabolic signaling pathways to enhance influx of the polyol cascades and hexosamine pathways, stimulate Protein Kinase-C (PKC) variants, and accumulate advanced glycation end products (AGEs). Additionally, the inequity between the scavenging and generation of ROS is caused by the epigenetic alteration caused by hyperglycemia that suppresses the antioxidant defense system. Induced by an excessive buildup of ROS, retinal changes in structure and function include mitochondrial damage, cellular death, inflammation, and lipid peroxidation. Therefore, it is crucial to comprehend and clarify the mechanisms connected to oxidative stress that underlie the development of DR.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Hiperglicemia , Humanos , Retinopatia Diabética/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/metabolismo , Estresse Oxidativo , Hiperglicemia/metabolismo , Produtos Finais de Glicação Avançada/metabolismo
12.
Cancer Med ; 12(18): 18797-18825, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37668041

RESUMO

BACKGROUND: Cancer treatment is still a global health challenge. Nowadays, chemotherapy is widely applied for treating cancer and reducing its burden. However, its application might be in accordance with various adverse effects by exposing the healthy tissues and multidrug resistance (MDR), leading to disease relapse or metastasis. In addition, due to tumor heterogeneity and the varied pharmacokinetic features of prescribed drugs, combination therapy has only shown modestly improved results in MDR malignancies. Nanotechnology has been explored as a potential tool for cancer treatment, due to the efficiency of nanoparticles to function as a vehicle for drug delivery. METHODS: With this viewpoint, functionalized nanosystems have been investigated as a potential strategy to overcome drug resistance. RESULTS: This approach aims to improve the efficacy of anticancer medicines while decreasing their associated side effects through a range of mechanisms, such as bypassing drug efflux, controlling drug release, and disrupting metabolism. This review discusses the MDR mechanisms contributing to therapeutic failure, the most cutting-edge approaches used in nanomedicine to create and assess nanocarriers, and designed nanomedicine to counteract MDR with emphasis on recent developments, their potential, and limitations. CONCLUSIONS: Studies have shown that nanoparticle-mediated drug delivery confers distinct benefits over traditional pharmaceuticals, including improved biocompatibility, stability, permeability, retention effect, and targeting capabilities.

13.
Front Nutr ; 10: 1126579, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37545572

RESUMO

Ulcerative colitis (UC) is presently considered a multifactorial pathology, which may lead to persistent inflammatory action of the gastrointestinal tract (GIT) because of an improperly managed immunological reactivity to the intestinal microbiota found in the GIT. The immune response to common commensal microbes plays an essential role in intestinal inflammation related to UC synbiotics, and it is an important element in the optimal therapy of UC. Therefore, synbiotics, i.e., a mixture of prebiotics and probiotics, may help control the diseased state. Synbiotics alleviate the inflammation of the colon by lowering the reactive oxygen species (ROS) and improving the level of antioxidant enzymes such as catalase (CAT), glutathione peroxidase (GPX), and superoxide dismutase (SOD). Prebiotic supplementation is not a common practice at the moment, despite numerous research findings proving that the benefits of both probiotics and prebiotics encourage their continued existence and positioning in the GIT, with positive effects on human health by managing the inflammatory response. However, the fact that there have been fewer studies on the treatment of UC with different probiotics coupled with selected prebiotics, i.e., synbiotics, and the outcomes of these studies have been very favorable. This evidence-based study explores the possible role of ROS, SOD, and synbiotics in managing the UC. The proposed review also focuses on the role of alteration of gut microbiota, antioxidant defense in the gastrointestinal tract, and the management of UC. Thus, the current article emphasizes oxidative stress signaling in the GI tract, oxidative stress-based pathomechanisms in UC patients, and UC therapies inhibiting oxidative stress' effects.

14.
J Orthop Case Rep ; 13(6): 99-104, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37398525

RESUMO

Introduction: The prevalence of giant cell tumor (GCT) of bone is approximately 5% of all primary osseous tumors. It accounts for <2% of the total cases as far as the involvement of the hand is concerned. Numerous studies stated that <1% of cases have phalangeal involvement of the thumb. Case Report: This case is delineated for its unusual location (thumb proximal phalanx) in a 42-year-old male patient managed by single-stage en-bloc excision, arthrodesis, and web-space deepening procedure without donor-site morbidity. It is known for its notorious nature for reoccurrence (10-50%) and transformation into malignancy (10%); therefore, meticulous dissection is a prerequisite. Conclusion: GCT of the thumb proximal phalanx is quite an unusual presentation. Although very rare, it is thought to be one of the most aggressive varieties of benign bone tumor observed to date. Amid a high rate of recurrence, careful preoperative planning is pivotal for fruitful outcome both anatomically and functionally.

15.
J Health Popul Nutr ; 42(1): 74, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37501216

RESUMO

BACKGROUND: Magnesium (Mg) has gained much importance recently because of its unique range of biological functions. It is one of the most significant micronutrients in biological systems. This review aims to outline the immune-regulating actions of Mg and its crucial role in regulating inflammation and immune response to infectious agents and malignancies. METHODS: We conducted a literature review on MEDLINE, PubMed, EMBASE, Web of Science to determine the impact of Mg on immune regulation in three settings of inflammation, infection, and cancer. We thoroughly examined all abstracts and full-text articles and selected the most relevant ones for inclusion in this review. RESULTS: Mg has long been associated with immunological responses, both nonspecific and specific. It plays a pivotal role in diverse immune responses by participating in multiple mechanisms. It facilitates substance P binding to lymphoblasts, promotes T helper, B cell, and macrophage responses to lymphokines, and facilitates antibody-dependent cytolysis and immune cell adherence. Besides, Mg serves as a cofactor for C'3 convertase and immunoglobulin synthesis. It additionally boasts a significant anti-cancer effect. Chronic Mg deficiency leads to enhanced baseline inflammation associated with oxidative stress, related to various age-associated morbidities. A deficiency of Mg in rodents has been observed to impact the cell-mediated immunity and synthesis of IgG adversely. This deficiency can lead to various complications, such as lymphoma, histaminosis, hypereosinophilia, increased levels of IgE, and atrophy of the thymus. The immunological consequences of Mg deficiency in humans can be influenced by the genetic regulation of Mg levels in blood cells. Mg can also mediate cell cycle progression. There has been a renewed interest in the physiology and therapeutic efficacy of Mg. However, the in-depth mechanisms, their clinical significance, and their importance in malignancies and inflammatory disorders still need to be clarified. CONCLUSIONS: Mg is essential for optimal immune function and regulating inflammation. Deficiency in Mg can lead to temporary or long-term immune dysfunction. A balanced diet usually provides sufficient Mg, but supplementation may be necessary in some cases. Excessive supplementation can have negative impacts on immune function and should be avoided. This review provides an update on the importance of Mg in an immune response against cancer cells and infectious agents and how it regulates inflammation, oxidative stress, cell progression, differentiation, and apoptosis.


Assuntos
Doenças Transmissíveis , Neoplasias , Humanos , Magnésio , Inflamação
16.
Int J Pharm ; 643: 123223, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37442399

RESUMO

Nanotechnology is a continually growing field with a wide range of applications from food science to biotechnology and nanobiotechnology. As the current world is grappling with non-biodegradable waste, considered more challenging and expensive to dispose of than biodegradable waste, new technologies are needed today more than ever. Modern technologies, especially nanotechnology, can transform biodegradable waste into products for human use. Researchers are exploring sustainable pathways for nanotechnology by utilizing biodegradable waste as a source for preparing nanomaterials. Over the past ten years, the biogenic production of metallic nanoparticles (NPs) has become a promising alternative technique to traditional NPs synthesis due to its simplicity, eco-friendliness, and biocompatibility in nature. Fruit and vegetable waste (after industrial processing) contain various bioactives (such as flavonoids, phenols, tannins, steroids, triterpenoids, glycosides, anthocyanins, carotenoids, ellagitannins, vitamin C, and essential oils) serving as reducing and capping agents for NP synthesis and they possess antibacterial, antioxidant, and anti-inflammatory properties. This review addresses various sources of biogenic NPs including their synthesis using fruit/vegetable waste, types of biogenic NPs, extraction processes and extracted biomaterials, the pharmacological functionality of NPs, industrial aspects, and future perspectives. In this manner, this review will cover the most recent research on the biogenic synthesis of NPs from fruit/vegetable peels to transform them into therapeutic nanomedicines.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , Humanos , Frutas , Antocianinas , Nanotecnologia/métodos
17.
IUBMB Life ; 75(11): 896-910, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37439402

RESUMO

Breast cancer is the prominent cause of cancer-related death in women globally in terms of incidence and mortality. Despite, recent advances in the management of breast cancer, there are still a lot of cases of resistance to medicines, which is currently one of the biggest problems faced by researchers across the globe. Out of several mechanisms, breast cancer resistance protein (BCRP) arbitrated drug resistance is a major concern. Hormonal, cytotoxic and immunotherapeutic drugs are used in the systemic therapy of breast cancer. It is vital to choose drugs based on the clinical and molecular attributes of the tumor to provide better treatment with greater efficacy and minimal harm. Given the aforementioned necessity, the use of marine flora in treating breast cancer cannot be neglected. The scientists also stressed the value of marine-derived goods in avoiding breast cancer resistance. Future research into the identification of anticancer drugs will heavily draw upon the marine environment's ample supply of marine-derived natural products (MNPs), which have a wide range of biological functions. Cell cycle arrest, induction of apoptosis and anti-angiogenic, anti-proliferative and anti-metastasis actions are all part of their processes. The overview of breast cancer, the mechanisms underlying its resistance, recent clinical trials based on marine-derived products in breast cancer and the use of marine products in the treatment of breast cancer are highlighted in this paper. Moreover, the authors also emphasised the importance of marine-derived products in preventing breast cancer resistance.

18.
ACS Appl Mater Interfaces ; 15(22): 26563-26575, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37227285

RESUMO

The ß-phase of the copolymer poly(vinylidene fluoride-trifluoroethylene) P(VDF-TrFE) possesses the highest dipole moment among all the functional polymers. It remains a key component of flexible energy-harvesting devices based on piezoelectricity and triboelectricity in the last decade. However, the quest for P(VDF-TrFE)-based magnetoelectric (ME) nanocomposites with enhanced ferroelectric, piezoelectric, and triboelectric properties remains elusive. The magnetostrictive inclusion in the copolymer matrix forms electrically conducting pathways and degrades ß-phase crystallinity significantly, deteriorating the functional properties of the nanocomposite films. To address this issue, we report the synthesis of magnetite (Fe3O4) nanoparticles on micron-scale magnesium hydroxide [Mg(OH)2] templates. These hierarchical structures were incorporated within the P(VDF-TrFE) matrix rendering composites with enhanced energy-harvesting capability. The Mg(OH)2 template prevents the formation of a continuous network of magnetic fillers, leading to lower electrical leakage in the composite. The addition of dual-phase fillers with 5 wt % only increases remanent polarization (Pr) values by ∼44%, owing to the presence of the ß-phase with significant crystallinity and increased interfacial polarization. The composite film exhibits a quasi-superparamagnetic nature and a significant magnetoelectric coupling coefficient (αME) of 30 mV/cm Oe. The film was also employed for triboelectric nanogenerator applications, exhibiting five times higher power density than the pristine film. We finally explored the integration of our ME devices with an internet of things platform to monitor the operational status of electrical appliances remotely. In light of these findings, the present work opens the path for future self-powered, multifunctional, and flexible ME devices with new application domains.

19.
Naunyn Schmiedebergs Arch Pharmacol ; 396(11): 2769-2792, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37219615

RESUMO

Lung cancer is the most common type of cancer, with over 2.1 million cases diagnosed annually worldwide. It has a high incidence and mortality rate, leading to extensive research into various treatment options, including the use of nanomaterial-based carriers for drug delivery. With regard to cancer treatment, the distinct biological and physico-chemical features of nano-structures have acquired considerable impetus as drug delivery system (DDS) for delivering medication combinations or combining diagnostics and targeted therapy. This review focuses on the use of nanomedicine-based drug delivery systems in the treatment of lung cancer, including the use of lipid, polymer, and carbon-based nanomaterials for traditional therapies such as chemotherapy, radiotherapy, and phototherapy. The review also discusses the potential of stimuli-responsive nanomaterials for drug delivery in lung cancer, and the limitations and opportunities for improving the design of nano-based materials for the treatment of non-small cell lung cancer (NSCLC).


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Nanopartículas , Neoplasias , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Nanopartículas/química , Neoplasias/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Portadores de Fármacos/química
20.
Pharmaceuticals (Basel) ; 16(4)2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37111362

RESUMO

Cancer is a complex and multifaceted group of diseases characterized by the uncontrolled growth and spread of abnormal cells. While cancer can be challenging and life-altering, advances in research and development have led to the identification of new promising anti-cancer targets. Telomerase is one such target that is overexpressed in almost all cancer cells and plays a critical role in maintaining telomere length, which is essential for cell proliferation and survival. Inhibiting telomerase activity can lead to telomere shortening and eventual cell death, thus presenting itself as a potential target for cancer therapy. Naturally occurring flavonoids are a class of compounds that have already been shown to possess different biological properties, including the anti-cancer property. They are present in various everyday food sources and richly present in fruits, nuts, soybeans, vegetables, tea, wine, and berries, to name a few. Thus, these flavonoids could inhibit or deactivate telomerase expression in cancer cells by different mechanisms, which include inhibiting the expression of hTERT, mRNA, protein, and nuclear translocation, inhibiting the binding of transcription factors to hTERT promoters, and even telomere shortening. Numerous cell line studies and in vivo experiments have supported this hypothesis, and this development could serve as a vital and innovative therapeutic option for cancer. In this light, we aim to elucidate the role of telomerase as a potential anti-cancer target. Subsequently, we have illustrated that how commonly found natural flavonoids demonstrate their anti-cancer activity via telomerase inactivation in different cancer types, thus proving the potential of these naturally occurring flavonoids as useful therapeutic agents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...