Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 27(4): 109348, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38523793

RESUMO

The translocation of polymers is omnipresent in inherently crowded biological systems. We investigate the dynamics of polymer translocation through a pore in free and crowded environments using Langevin dynamics simulation. We observed a location-dependent translocation rate of monomers showcasing counterintuitive behavior in stark contrast to the bead velocity along the polymer backbone. The free energy calculation of asymmetrically placed polymers indicates a critical number of segments to direct receiver-side translocation. For one-sided crowding, we have identified a critical crowding size revealing a nonzero probability of translocation toward the crowded-side. Moreover, we have observed that shifting the polymer toward the crowded-side compensates for one-sided crowding, yielding an equal probability akin to a crowder-free system. In two-sided crowding, a slight variation in crowder size and packing fraction induces a polymer to switch its translocation direction. These conspicuous yet counter-intuitive phenomena are rationalized by minimalistic theoretical arguments based on osmotic pressure and radial entropic forces.

2.
J Biomol Struct Dyn ; : 1-15, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38193892

RESUMO

The Dopa Decarboxylase (DDC) gene plays an important role in the synthesis of biogenic amines such as dopamine, serotonin, and histamine. Non-synonymous single nucleotide polymorphisms (nsSNPs) in the DDC gene have been linked with various neurodegenerative disorders. In this study, a comprehensive in silico analysis of nsSNPs in the DDC gene was conducted to assess their potential functional consequences and associations with disease outcomes. Using publicly available databases, a complete list of nsSNPs in the DDC gene was obtained. 29 computational tools and algorithms were used to characterise the effects of these nsSNPs on protein structure, function, and stability. In addition, the population-based association studies were performed to investigate possible associations between specific nsSNPs and arthritis. Our research identified four novel DDC gene nsSNPs that have a major impact on the structure and function of proteins. Through molecular dynamics simulations (MDS), we observed changes in the stability of the DDC protein induced by specific nsSNPs. Furthermore, population-based association studies have revealed potential associations between certain DDC nsSNPs and various neurological disorders, including Parkinson's disease and dementia. The in silico approach used in this study offers insightful information about the functional effects of nsSNPs in the DDC gene. These discoveries provide insight into the cellular processes that underlie cognitive disorders. Furthermore, the detection of disease-associated nsSNPs in the DDC gene may facilitate the development of tailored and targeted therapy approaches.Communicated by Ramaswamy H. Sarma.

3.
J Biomol Struct Dyn ; : 1-17, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37382215

RESUMO

Quinonoid dihydropteridine reductase (QDPR) is an enzyme that regulates tetrahydrobiopterin (BH4), a cofactor for enzymes involved in neurotransmitter synthesis and blood pressure regulation. Reduced QDPR activity can cause dihydrobiopterin (BH2) accumulation and BH4 depletion, leading to impaired neurotransmitter synthesis, oxidative stress, and increased risk of Parkinson's disease. A total of 10,236 SNPs were identified in the QDPR gene, with 217 being missense SNPs. Over 18 different sequence-based and structure-based tools were employed to assess the protein's biological activity, with several computational tools identifying deleterious SNPs. Additionally, the article provides detailed information about the QDPR gene and protein structure and conservation analysis. The results showed that 10 mutations were harmful and linked to brain and central nervous system disorders, and were predicted to be oncogenic by Dr. Cancer and CScape. Following conservation analysis, the HOPE server was used to analyse the effect of six selected mutations (L14P, V15G, G23S, V54G, M107K, G151S) on the protein structure. Overall, the study provides insights into the biological and functional impact of nsSNPs on QDPR activity and the potential induced pathogenicity and oncogenicity. In the future, research can be conducted to systematically evaluate QDPR gene variation through clinical studies, investigate mutation prevalence across different geographical regions, and validate computational results with conclusive experiments.Communicated by Ramaswamy H. Sarma.

4.
Front Bioeng Biotechnol ; 9: 785937, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34926430

RESUMO

Numerous strategies have been developed to treat cancer conventionally. Most importantly, chemotherapy shows its huge promise as a better treatment modality over others. Nonetheless, the very complex behavior of the tumor microenvironment frequently impedes successful drug delivery to the tumor sites that further demands very urgent and effective distribution mechanisms of anticancer drugs specifically to the tumor sites. Hence, targeted drug delivery to tumor sites has become a major challenge to the scientific community for cancer therapy by assuring drug effects to selective tumor tissue and overcoming undesired toxic side effects to the normal tissues. The application of nanotechnology to the drug delivery system pays heed to the design of nanomedicine for specific cell distribution. Aiming to limit the use of traditional strategies, the adequacy of drug-loaded nanocarriers (i.e., nanomedicine) proves worthwhile. After systemic blood circulation, a typical nanomedicine follows three levels of disposition to tumor cells in order to exhibit efficient pharmacological effects induced by the drug candidates residing within it. As a result, nanomedicine propounds the assurance towards the improved bioavailability of anticancer drug candidates, increased dose responses, and enhanced targeted efficiency towards delivery and distribution of effective therapeutic concentration, limiting toxic concentration. These aspects emanate the proficiency of drug delivery mechanisms. Understanding the potential tumor targeting barriers and limiting conditions for nanomedicine extravasation, tumor penetration, and final accumulation of the anticancer drug to tumor mass, experiments with in vivo animal models for nanomedicine screening are a key step before it reaches clinical translation. Although the study with animals is undoubtedly valuable, it has many associated ethical issues. Moreover, individual experiments are very expensive and take a longer time to conclude. To overcome these issues, nowadays, multicellular tumor spheroids are considered a promising in vitro model system that proposes better replication of in vivo tumor properties for the future development of new therapeutics. In this review, we will discuss how tumor spheroids could be used as an in vitro model system to screen nanomedicine used in targeted drug delivery, aiming for better therapeutic benefits. In addition, the recent proliferation of mathematical modeling approaches gives profound insight into the underlying physical principles and produces quantitative predictions. The hierarchical tumor structure is already well decorous to be treated mathematically. To study targeted drug delivery, mathematical modeling of tumor architecture, its growth, and the concentration gradient of oxygen are the points of prime focus. Not only are the quantitative models circumscribed to the spheroid, but also the role of modeling for the nanoparticle is equally inevitable. Abundant mathematical models have been set in motion for more elaborative and meticulous designing of nanomedicine, addressing the question regarding the objective of nanoparticle delivery to increase the concentration and the augmentative exposure of the therapeutic drug molecule to the core. Thus, to diffuse the dichotomy among the chemistry involved, biological data, and the underlying physics, the mathematical models play an indispensable role in assisting the experimentalist with further evaluation by providing the admissible quantitative approach that can be validated. This review will provide an overview of the targeted drug delivery mechanism for spheroid, using nanomedicine as an advantageous tool.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...