Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur J Transl Myol ; 34(2)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38787292

RESUMO

During the natural aging process, frailty is often associated with abnormal muscular performance. Although inter-individual differences exit, in most elderly the tissue mass and physiological functionality of voluntary muscles drastically decreases. In order to study age-related contractile decline, animal model research is of central importance in the field of biogerontology. Here we have analyzed wild type mouse muscle to establish a proteomic map of crude tissue extracts. Proteomics is an advanced and large-scale biochemical method that attempts to identify all accessible proteins in a given biological sample. It is a technology-driven approach that uses mass spectrometry for the characterization of individual protein species. Total protein extracts were used in this study in order to minimize the potential introduction of artefacts due to excess subcellular fractionation procedures. In this report, the proteomic survey of aged muscles has focused on organellar marker proteins, as well as proteins that are involved in cellular signaling, the regulation of ion homeostasis, bioenergetic metabolism and molecular chaperoning. Hence, this study has establish a proteomic reference map of a highly suitable model system for future aging research.

2.
Eur J Transl Myol ; 34(2)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38787300

RESUMO

Sarcopenia of old age is characterized by the progressive loss of skeletal muscle mass and concomitant decrease in contractile strength. Age-related skeletal muscle dysfunctions play a key pathophysiological role in the frailty syndrome and can result in a drastically diminished quality of life in the elderly. Here we have used mass spectrometric analysis of the mouse hindlimb musculature to establish the muscle protein constellation at advanced age of a widely used sarcopenic animal model. Proteomic results were further analyzed by systems bioinformatics of voluntary muscles. In this report, the proteomic survey of aged muscles has focused on the expression patterns of proteins involved in the contraction-relaxation cycle, membrane cytoskeletal maintenance and the formation of the extracellular matrix. This includes proteomic markers of the fast versus slow phenotypes of myosin-containing thick filaments and actin-containing thin filaments, as well as proteins that are associated with the non-sarcomeric cytoskeleton and various matrisomal layers. The bioanalytical usefulness of the newly established reference map was demonstrated by the comparative screening of normal versus dystrophic muscles of old age, and findings were verified by immunoblot analysis.

3.
Biomolecules ; 13(7)2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37509144

RESUMO

The progressive degeneration of the skeletal musculature in Duchenne muscular dystrophy is accompanied by reactive myofibrosis, fat substitution, and chronic inflammation. Fibrotic changes and reduced tissue elasticity correlate with the loss in motor function in this X-chromosomal disorder. Thus, although dystrophinopathies are due to primary abnormalities in the DMD gene causing the almost-complete absence of the cytoskeletal Dp427-M isoform of dystrophin in voluntary muscles, the excessive accumulation of extracellular matrix proteins presents a key histopathological hallmark of muscular dystrophy. Animal model research has been instrumental in the characterization of dystrophic muscles and has contributed to a better understanding of the complex pathogenesis of dystrophinopathies, the discovery of new disease biomarkers, and the testing of novel therapeutic strategies. In this article, we review how mass-spectrometry-based proteomics can be used to study changes in key components of the endomysium, perimysium, and epimysium, such as collagens, proteoglycans, matricellular proteins, and adhesion receptors. The mdx-4cv mouse diaphragm displays severe myofibrosis, making it an ideal model system for large-scale surveys of systematic alterations in the matrisome of dystrophic fibers. Novel biomarkers of myofibrosis can now be tested for their appropriateness in the preclinical and clinical setting as diagnostic, pharmacodynamic, prognostic, and/or therapeutic monitoring indicators.


Assuntos
Diafragma , Distrofia Muscular de Duchenne , Animais , Camundongos , Camundongos Endogâmicos mdx , Diafragma/metabolismo , Diafragma/patologia , Proteômica , Distrofia Muscular de Duchenne/patologia , Músculo Esquelético/metabolismo , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Biomarcadores/metabolismo
4.
Int J Mol Sci ; 24(3)2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36768735

RESUMO

The progressive loss of skeletal muscle mass and concomitant reduction in contractile strength plays a central role in frailty syndrome. Age-related neuronal impairments are closely associated with sarcopenia in the elderly, which is characterized by severe muscular atrophy that can considerably lessen the overall quality of life at old age. Mass-spectrometry-based proteomic surveys of senescent human skeletal muscles, as well as animal models of sarcopenia, have decisively improved our understanding of the molecular and cellular consequences of muscular atrophy and associated fiber-type shifting during aging. This review outlines the mass spectrometric identification of proteome-wide changes in atrophying skeletal muscles, with a focus on contractile proteins as potential markers of changes in fiber-type distribution patterns. The observed trend of fast-to-slow transitions in individual human skeletal muscles during the aging process is most likely linked to a preferential susceptibility of fast-twitching muscle fibers to muscular atrophy. Studies with senescent animal models, including mostly aged rodent skeletal muscles, have confirmed fiber-type shifting. The proteomic analysis of fast versus slow isoforms of key contractile proteins, such as myosin heavy chains, myosin light chains, actins, troponins and tropomyosins, suggests them as suitable bioanalytical tools of fiber-type transitions during aging.


Assuntos
Sarcopenia , Idoso , Animais , Humanos , Sarcopenia/metabolismo , Proteômica , Idoso Fragilizado , Qualidade de Vida , Músculo Esquelético/metabolismo , Troponina/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Fibras Musculares Esqueléticas/metabolismo
5.
Methods Mol Biol ; 2596: 291-302, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36378446

RESUMO

The biochemical and cell biological profiling of contractile fiber types and subcellular structures plays a central role in basic and applied myology. Mass spectrometry-based proteomics presents an ideal approach for the systematic identification of proteomic and subproteomic markers. These representative components of fast versus slow muscle fibers and their subcellular fractions are highly useful for in-depth surveys of skeletal muscle adaptations to physiological challenges, as well as the improvement of diagnostic, prognostic, and therapy-monitoring methodologies in muscle pathology. This chapter outlines the identification of subproteomic markers for skeletal muscle profiling based on bottom-up and top-down approaches, including fluorescence two-dimensional difference gel electrophoresis (2D-DIGE).


Assuntos
Proteínas Musculares , Proteômica , Proteômica/métodos , Proteínas Musculares/análise , Eletroforese em Gel Diferencial Bidimensional/métodos , Músculo Esquelético/metabolismo , Espectrometria de Massas , Biomarcadores/metabolismo , Proteoma/metabolismo , Eletroforese em Gel Bidimensional
6.
Methods Mol Biol ; 2596: 325-337, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36378448

RESUMO

Fluorescence two-dimensional difference gel electrophoresis (2D-DIGE) is a widely employed method for efficient protein separation and the determination of abundance changes in distinct proteoforms. This makes this gel-based method a key technique of comparative approaches in top-down proteomics. For the appropriate screening of proteome-wide alterations, initial preparative steps involve sample handling, homogenization, subcellular fractionation, and the determination of protein concentration, which makes the optimal application of these techniques a crucial part of a successful initiation of a new 2D-DIGE-based analysis. This chapter describes sample homogenization and a standardized protein assay for the preparation of homogenates with a known protein concentration for subsequent differential fluorescent tagging and two-dimensional gel electrophoretic separation.


Assuntos
Proteoma , Proteômica , Eletroforese em Gel Diferencial Bidimensional/métodos , Proteômica/métodos , Eletroforese em Gel Bidimensional/métodos , Manejo de Espécimes
7.
Life (Basel) ; 12(11)2022 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-36362832

RESUMO

Deficiency in the membrane cytoskeletal protein dystrophin is the underlying cause of the progressive muscle wasting disease named Duchenne muscular dystrophy. In order to detect novel disease marker candidates and confirm the complexity of the pathobiochemical signature of dystrophinopathy, mass spectrometric screening approaches represent ideal tools for comprehensive biomarker discovery studies. In this report, we describe the comparative proteomic analysis of young versus aged diaphragm muscles from wild type versus the dystrophic mdx-4cv mouse model of X-linked muscular dystrophy. The survey confirmed the drastic reduction of the dystrophin-glycoprotein complex in the mdx-4cv diaphragm muscle and concomitant age-dependent changes in key markers of muscular dystrophy, including proteins involved in cytoskeletal organization, metabolite transportation, the cellular stress response and excitation-contraction coupling. Importantly, proteomic markers of the regulation of membrane repair, tissue regeneration and reactive myofibrosis were detected by mass spectrometry and changes in key proteins were confirmed by immunoblotting. Potential disease marker candidates include various isoforms of annexin, the matricellular protein periostin and a large number of collagens. Alterations in these proteoforms can be useful to evaluate adaptive, compensatory and pathobiochemical changes in the intracellular cytoskeleton, myofiber membrane integrity and the extracellular matrix in dystrophin-deficient skeletal muscle tissues.

8.
Proteomics ; 22(23-24): e2200003, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35902360

RESUMO

The X-linked inherited neuromuscular disorder Duchenne muscular dystrophy is characterised by primary abnormalities in the membrane cytoskeletal component dystrophin. The almost complete absence of the Dp427-M isoform of dystrophin in skeletal muscles renders contractile fibres more susceptible to progressive degeneration and a leaky sarcolemma membrane. This in turn results in abnormal calcium homeostasis, enhanced proteolysis and impaired excitation-contraction coupling. Biochemical and mass spectrometry-based proteomic studies of both patient biopsy specimens and genetic animal models of dystrophinopathy have demonstrated significant changes in the concentration and/or physiological function of essential calcium-regulatory proteins in dystrophin-lacking voluntary muscles. Abnormalities include dystrophinopathy-associated changes in voltage sensing receptors, calcium release channels, calcium pumps and calcium binding proteins. This review article provides an overview of the importance of the sarcolemmal dystrophin-glycoprotein complex and the wider dystrophin complexome in skeletal muscle and its linkage to depolarisation-induced calcium-release mechanisms and the excitation-contraction-relaxation cycle. Besides chronic inflammation, fat substitution and reactive myofibrosis, a major pathobiochemical hallmark of X-linked muscular dystrophy is represented by the chronic influx of calcium ions through the damaged plasmalemma in conjunction with abnormal intracellular calcium fluxes and buffering. Impaired calcium handling proteins should therefore be included in an improved biomarker signature of Duchenne muscular dystrophy.


Assuntos
Distrofina , Distrofia Muscular de Duchenne , Animais , Distrofina/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patologia , Proteômica/métodos , Cálcio/metabolismo , Espectrometria de Massas/métodos , Músculo Esquelético/metabolismo
9.
Histol Histopathol ; 37(2): 101-116, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34873679

RESUMO

Duchenne muscular dystrophy is an inherited disorder of early childhood that affects multiple systems in the body. Besides late-onset cardio-respiratory syndrome and various body-wide pathophysiological changes, X-linked muscular dystrophy is primarily classified as a disorder of the skeletal musculature. This is reflected by severe histopathological alterations in voluntary contractile tissues, including progressive fibre degeneration, fat substitution, reactive myofibrosis and chronic inflammation. The underlying cause for dystrophinopathy are genetic abnormalities in the DMD gene, which can result in the almost complete loss of the membrane cytoskeletal protein dystrophin, which triggers the collapse of the dystrophin-associated glycoprotein complex and disintegration of sarcolemmal integrity. This in turn results in an increased frequency of membrane micro-rupturing and abnormal calcium ion fluxes through the impaired plasmalemma, which renders muscle fibres more susceptible to enhanced proteolytic degradation and necrosis. This review focuses on the complexity of skeletal muscle changes in X-linked muscular dystrophy and outlines cell biological and histological alterations in correlation to proteome-wide variations as judged by mass spectrometric analyses. This includes a general outline of sample handling, subcellular fraction protocols and modern proteomic approaches using gel electrophoretic and liquid chromatographic methods for efficient protein separation prior to mass spectrometry. The proteomic profiling of the dystrophic and highly fibrotic diaphragm muscle is described as an example to swiftly identify novel proteomic markers of complex histopathological changes during skeletal muscle degeneration. The potential usefulness of new protein markers is examined in relation to key histopathological hallmarks for establishing improved diagnostic, prognostic and therapy-monitoring approaches in the field of dystrophinopathy.


Assuntos
Distrofia Muscular de Duchenne , Animais , Biomarcadores/metabolismo , Distrofina/genética , Distrofina/metabolismo , Humanos , Espectrometria de Massas , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/patologia , Proteoma/metabolismo , Proteômica/métodos
10.
Expert Rev Proteomics ; 18(12): 1073-1086, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34890519

RESUMO

INTRODUCTION: Carbonic anhydrase (CA) is a key enzyme that mediates the reversible hydration of carbon dioxide. Skeletal muscles contain high levels of the cytosolic isoform CA3. This enzyme has antioxidative function and plays a crucial role in the maintenance of intracellular pH homeostasis. AREAS COVERED: Since elevated levels of serum CA3, often in combination with other muscle-specific proteins, are routinely used as a marker of general muscle damage, it was of interest to examine recent analyses of this enzyme carried out by modern proteomics. This review summarizes the mass spectrometry-based identification and evaluation of CA3 in normal, adapting, dystrophic, and aging skeletal muscle tissues. EXPERT OPINION: The mass spectrometric characterization of CA3 confirmed this enzyme as a highly useful marker of both physiological and pathophysiological alterations in skeletal muscles. Cytosolic CA3 is clearly enriched in slow-twitching type I fibers, which makes it an ideal marker for studying fiber type shifting and muscle adaptations. Importantly, neuromuscular diseases feature distinct alterations in CA3 in skeletal muscle tissues versus biofluids, such as serum. Characteristic changes of CA3 in age-related muscle wasting and dystrophinopathy established this enzyme as a suitable biomarker candidate for differential diagnosis and monitoring of disease progression and therapeutic impact.


Assuntos
Anidrases Carbônicas , Proteômica , Humanos , Espectrometria de Massas , Proteínas Musculares , Músculo Esquelético
11.
Life (Basel) ; 11(7)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206383

RESUMO

Extraocular muscles (EOMs) represent a specialized type of contractile tissue with unique cellular, physiological, and biochemical properties. In Duchenne muscular dystrophy, EOMs stay functionally unaffected in the course of disease progression. Therefore, it was of interest to determine their proteomic profile in dystrophinopathy. The proteomic survey of wild type mice and the dystrophic mdx-4cv model revealed a broad spectrum of sarcomere-associated proteoforms, including components of the thick filament, thin filament, M-band and Z-disk, as well as a variety of muscle-specific markers. Interestingly, the mass spectrometric analysis revealed unusual expression levels of contractile proteins, especially isoforms of myosin heavy chain. As compared to diaphragm muscle, both proteomics and immunoblotting established isoform MyHC14 as a new potential marker in wild type EOMs, in addition to the previously identified isoforms MyHC13 and MyHC15. Comparative proteomics was employed to establish alterations in the protein expression profile between normal EOMs and dystrophin-lacking EOMs. The analysis of mdx-4cv EOMs identified elevated levels of glycolytic enzymes and molecular chaperones, as well as decreases in mitochondrial enzymes. These findings suggest a process of adaptation in dystrophin-deficient EOMs via a bioenergetic shift to more glycolytic metabolism, as well as an efficient cellular stress response in EOMs in dystrophinopathy.

12.
Eur J Transl Myol ; 31(1)2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33709651

RESUMO

The neuromuscular disorder Duchenne muscular dystrophy is a multi-systemic disease that is caused by a primary abnormality in the X-chromosomal Dmd gene. Although progressive skeletal muscle wasting and cardio-respiratory complications are the most serious symptoms that are directly linked to the almost complete loss of the membrane cytoskeletal protein dystrophin, dystrophic patients also suffer from gastrointestinal dysfunction. In order to determine whether proteome-wide changes potentially occur in the gastrointestinal system due to dystrophin deficiency, total tissue extracts from the interface between the stomach wall and the pancreas of the mdx-4cv model of dystrophinopathy were analysed by mass spectrometry. Following the proteomic establishment of both smooth muscle markers of the gastrointestinal system and key enzymes of the pancreas, core members of the dystrophin-glycoprotein complex, including dystrophin, dystroglycans, sarcoglycans, dystrobrevins and syntrophins were identified in this tissue preparation. Comparative proteomics revealed a drastic reduction in dystrophin, sarcoglycan, dystroglycan, laminin, titin and filamin suggesting loss of cytoskeletal integrity in mdx-4cv smooth muscles. A concomitant increase in various mitochondrial enzymes is indicative of metabolic disturbances. These findings agree with abnormal gastrointestinal function in dystrophinopathy.

13.
Proteomes ; 9(1)2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33540575

RESUMO

The systematic bioanalytical characterization of the protein product of the DMD gene, which is defective in the pediatric disorder Duchenne muscular dystrophy, led to the discovery of the membrane cytoskeletal protein dystrophin. Its full-length muscle isoform Dp427-M is tightly linked to a sarcolemma-associated complex consisting of dystroglycans, sarcoglyans, sarcospan, dystrobrevins and syntrophins. Besides these core members of the dystrophin-glycoprotein complex, the wider dystrophin-associated network includes key proteins belonging to the intracellular cytoskeleton and microtubular assembly, the basal lamina and extracellular matrix, various plasma membrane proteins and cytosolic components. Here, we review the central role of the dystrophin complex as a master node in muscle fibers that integrates cytoskeletal organization and cellular signaling at the muscle periphery, as well as providing sarcolemmal stabilization and contractile force transmission to the extracellular region. The combination of optimized tissue extraction, subcellular fractionation, advanced protein co-purification strategies, immunoprecipitation, liquid chromatography and two-dimensional gel electrophoresis with modern mass spectrometry-based proteomics has confirmed the composition of the core dystrophin complex at the sarcolemma membrane. Importantly, these biochemical and mass spectrometric surveys have identified additional members of the wider dystrophin network including biglycan, cavin, synemin, desmoglein, tubulin, plakoglobin, cytokeratin and a variety of signaling proteins and ion channels.

14.
STAR Protoc ; 1(3): 100196, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33377090

RESUMO

This protocol describes the comparative proteomic profiling of the spleen of wild type versus mdx-4cv mouse, a model of dystrophinopathy. We detail sample preparation for bottom-up proteomic mass spectrometry experiments, including homogenization of tissue, protein concentration measurements, protein digestion, and removal of interfering chemicals. We then describe the steps for mass spectrometric analysis and bioinformatic evaluation. For complete details on the use and execution of this protocol, please refer to Dowling et al. (2020).


Assuntos
Proteômica/métodos , Baço/citologia , Baço/metabolismo , Animais , Biologia Computacional/métodos , Distrofina/deficiência , Espectrometria de Massas/métodos , Camundongos , Camundongos Endogâmicos mdx , Proteólise , Proteoma/análise , Manejo de Espécimes/métodos , Baço/química
15.
iScience ; 23(9): 101500, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32916630

RESUMO

Duchenne muscular dystrophy is primarily characterized by progressive muscle wasting due to deficiency in the membrane cytoskeletal protein dystrophin but is also associated with body-wide cellular disturbances in a variety of non-muscle tissues. In this study, we have focused on the comparative proteomic analysis of the spleen and established considerable changes in this crucial secondary lymphoid organ from the genetic mdx-4cv mouse model of dystrophinopathy. An apparent short isoform of dystrophin and associated glycoproteins were identified in spleen by mass spectrometry but appear not be affected in muscular dystrophy. In contrast, the mdx-4cv spleen showed significant proteome-wide changes in other protein species that are involved in metabolism, signaling, and cellular architecture. Since the spleen plays a key role in the immune response, these proteomic alterations may reflect pathophysiological cross talk between the lymphoid system and dystrophic muscles, which are affected by both fiber degeneration and inflammation.

16.
Mol Omics ; 16(3): 268-278, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32211681

RESUMO

Since the protein constituents of urine present a dynamic proteome that can reflect a variety of disease-related alterations in the body, the mass spectrometric survey of proteome-wide changes in urine promises new insights into pathogenic mechanisms. Urine can be investigated in a completely non-invasive way and provides valuable biomedical information on body-wide changes. In this report, we have focused on the urine proteome in X-linked muscular dystrophy using the established mdx-4cv mouse model of dystrophinopathy. In order to avoid potential artefacts due to the manipulation of the biofluid proteome prior to mass spectrometry, crude urine specimens were analyzed without the prior usage of centrifugation steps or concentration procedures. Comparative proteomics revealed 21 increased and 8 decreased proteins out of 870 identified urinary proteoforms using 50 µl of biofluid per investigated sample, i.e. 14 wild type versus 14 mdx-4cv specimens. Promising marker proteins that were almost exclusively found in mdx-4cv urine included nidogen, parvalbumin and titin. Interestingly, the mass spectrometric identification of urine-associated titin revealed a wide spread of peptides over the sequence of this giant muscle protein. The newly established urinomic signature of dystrophinopathy might be helpful for the design of non-invasive assays to improve diagnosis, prognosis, therapy-monitoring and evaluation of potential harmful side effects of novel treatments in the field of muscular dystrophy research.


Assuntos
Biomarcadores/urina , Distrofia Muscular de Duchenne/metabolismo , Proteômica/métodos , Animais , Regulação da Expressão Gênica , Humanos , Espectrometria de Massas , Glicoproteínas de Membrana/urina , Camundongos , Camundongos Endogâmicos mdx , Distrofia Muscular de Duchenne/urina , Parvalbuminas/urina , Proteínas Quinases/urina
17.
Expert Rev Proteomics ; 17(2): 137-148, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32067530

RESUMO

Introduction: Duchenne muscular dystrophy is a neuromuscular disorder, which is caused by abnormalities in the DMD gene that encodes the membrane cytoskeletal protein dystrophin. Besides progressive skeletal muscle wasting, dystrophinopathy also affects non-skeletal muscle tissues, including cells in the cardio-respiratory system, the central nervous system, the liver and the kidney.Areas covered: This review summarizes the proteomic characterization of a key class of lipid chaperones, the large family of fatty acid binding proteins, and their potential role in muscular dystrophy. Recent proteomic surveys using animal models and patient specimens are reviewed. Pathobiochemical changes in specific proteoforms of fatty acid binding protein in the multi-system pathology of dystrophinopathy are discussed.Expert opinion: The mass spectrometric identification of distinct changes in fatty acid binding proteins in muscle, heart, liver, kidney and serum demonstrates that considerable alterations occur in key steps of metabolite transport and fat metabolism in muscular dystrophy. These new findings might be helpful to further develop a comprehensive biomarker signature of metabolic changes in X-linked muscular dystrophy, which should improve (i) our understanding of complex pathobiochemical changes due to dystrophin deficiency, (ii) the identification of novel therapeutic targets, and (iii) the design of differential diagnostic, prognostic and therapy-monitoring approaches.


Assuntos
Proteínas de Ligação a Ácido Graxo/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Proteômica/métodos , Animais , Biomarcadores/química , Biomarcadores/metabolismo , Proteínas de Ligação a Ácido Graxo/química , Humanos , Distrofia Muscular de Duchenne/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA