Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Plant Microbe Interact ; 32(11): 1517-1525, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31265361

RESUMO

As inducers of nodulation (nod) genes, flavonoids play an important role in the symbiotic interaction between rhizobia and legumes. However, in addition to the control of expression of nod genes, many other effects of flavonoids on rhizobial cells have been described. Here, we show that the flavonoid naringenin stimulates the growth of the photosynthetic Bradyrhizobium sp. strain ORS285. This growth-stimulating effect was still observed for strain ORS285 with nodD1, nodD2, or the naringenin-degrading fde operon deleted. Phenotypic microarray analysis indicates that in cells grown in the presence of naringenin, the glycerol and fatty acid metabolism is activated. Moreover, electron microscopic and enzymatic analyses show that polyhydroxy alkanoate metabolism is altered in cells grown in the presence of naringenin. Although strain ORS285 was able to degrade naringenin, a fraction was converted into an intensely yellow-colored molecule with an m/z (+) of 363.0716. Further analysis indicates that this molecule is a hydroxylated and O-methylated form of naringenin. In contrast to naringenin, this derivative did not induce nod gene expression, but it did stimulate the growth of strain ORS285. We hypothesize that the growth stimulation and metabolic changes induced by naringenin are part of a mechanism to facilitate the colonization and infection of naringenin-exuding host plants.


Assuntos
Bradyrhizobium , Fabaceae , Flavanonas , Rhizobium , Proteínas de Bactérias/metabolismo , Bradyrhizobium/efeitos dos fármacos , Bradyrhizobium/crescimento & desenvolvimento , Bradyrhizobium/metabolismo , Flavanonas/genética , Flavanonas/metabolismo , Flavanonas/farmacologia , Flavonoides , Genes Bacterianos/genética , Simbiose/genética
2.
PLoS One ; 14(3): e0213087, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30840696

RESUMO

The split GFP technique is based on the auto-assembly of GFP when two polypeptides-GFP1-10 (residues 1-214; the detector) and GFP11 (residues 215-230; the tag)-both non-fluorescing on their own, associate spontaneously to form a fluorescent molecule. We evaluated this technique for its efficacy in contributing to the characterization of Cauliflower mosaic virus (CaMV) infection. A recombinant CaMV with GFP11 fused to the viral protein P6 (a key player in CaMV infection and major constituent of viral factory inclusions that arise during infection) was constructed and used to inoculate transgenic Arabidopsis thaliana expressing GFP1-10. The mutant virus (CaMV11P6) was infectious, aphid-transmissible and the insertion was stable over many passages. Symptoms on infected plants were delayed and milder. Viral protein accumulation, especially of recombinant 11P6, was greatly decreased, impeding its detection early in infection. Nonetheless, spread of infection from the inoculated leaf to other leaves was followed by whole plant imaging. Infected cells displayed in real time confocal laser scanning microscopy fluorescence in wild type-looking virus factories. Thus, it allowed for the first time to track a CaMV protein in vivo in the context of an authentic infection. 11P6 was immunoprecipitated with anti-GFP nanobodies, presenting a new application for the split GFP system in protein-protein interaction assays and proteomics. Taken together, split GFP can be an attractive alternative to using the entire GFP for protein tagging.


Assuntos
Arabidopsis/virologia , Caulimovirus/patogenicidade , Proteínas de Fluorescência Verde/genética , Proteínas Virais/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Caulimovirus/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Microscopia Confocal , Mutagênese Sítio-Dirigida , Doenças das Plantas/virologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/virologia , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/virologia , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Virais/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-30687830

RESUMO

Here, we report the complete genome sequence of Bradyrhizobium sp. strain ORS3257, which forms efficient symbioses with cowpea, peanut, or groundnut. These genomic data will be useful to identify genes associated with symbiotic performance and host compatibility on several legumes, including Aeschynomene species, with which a Nod-independent type III secretion system (T3SS)-dependent symbiosis can be established.

4.
J Virol ; 92(14)2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29769332

RESUMO

Plant viruses transmitted by insects cause tremendous losses in most important crops around the world. The identification of receptors of plant viruses within their insect vectors is a key challenge to understanding the mechanisms of transmission and offers an avenue for future alternative control strategies to limit viral spread. We here report the identification of two cuticular proteins within aphid mouthparts, and we provide experimental support for the role of one of them in the transmission of a noncirculative virus. These two proteins, named Stylin-01 and Stylin-02, belong to the RR-1 cuticular protein subfamily and are highly conserved among aphid species. Using an immunolabeling approach, they were localized in the maxillary stylets of the pea aphid Acyrthosiphon pisum and the green peach aphid Myzus persicae, in the acrostyle, an organ earlier shown to harbor receptors of a noncirculative virus. A peptide motif present at the C termini of both Stylin-01 and Stylin-02 is readily accessible all over the surface of the acrostyle. Competition for in vitro binding to the acrostyle was observed between an antibody targeting this peptide and the helper component protein P2 of Cauliflower mosaic virus Furthermore, silencing the stylin-01 but not stylin-02 gene through RNA interference decreased the efficiency of Cauliflower mosaic virus transmission by Myzus persicae These results identify the first cuticular proteins ever reported within arthropod mouthparts and distinguish Stylin-01 as the best candidate receptor for the aphid transmission of noncirculative plant viruses.IMPORTANCE Most noncirculative plant viruses transmitted by insect vectors bind to their mouthparts. They are acquired and inoculated within seconds when insects hop from plant to plant. The receptors involved remain totally elusive due to a long-standing technical bottleneck in working with insect cuticle. Here we characterize the role of the two first cuticular proteins ever identified in arthropod mouthparts. A domain of these proteins is directly accessible at the surface of the cuticle of the acrostyle, an organ at the tip of aphid stylets. The acrostyle has been shown to bind a plant virus, and we consistently demonstrated that one of the identified proteins is involved in viral transmission. Our findings provide an approach to identify proteins in insect mouthparts and point at an unprecedented gene candidate for a plant virus receptor.


Assuntos
Vírus de Plantas/metabolismo , Receptores Virais/química , Receptores Virais/metabolismo , Animais , Afídeos/metabolismo , Afídeos/virologia , Brassica/virologia , Sequência Conservada , Evolução Molecular , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Insetos Vetores/virologia , Família Multigênica , Pisum sativum/virologia , Prunus persica/virologia
5.
PLoS One ; 11(10): e0165188, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27764211

RESUMO

Cowpea, (Vigna unguiculata L. (Walp)) is an annual tropical grain legume. Often referred to as "poor man's meat", cowpea is one of the most important subsistence legumes cultivated in West Africa due to the high protein content of its seeds. However, African cowpea production can be seriously constrained by viral diseases that reduce yields. While twelve cowpea-infecting viruses have been reported from Africa, only three of these have so-far been reported from Burkina Faso. Here we use a virion-associated nucleic acids (VANA)-based metagenomics method to screen for the presence of cowpea viruses from plants collected from the three agro-climatic zones of Burkina Faso. Besides the three cowpea-infecting virus species which have previously been reported from Burkina Faso (Cowpea aphid borne mosaic virus [Family Potyviridae], the Blackeye cowpea mosaic virus-a strain of Bean common mosaic virus-[Family Potyviridae] and Cowpea mottle virus [Family Tombusviridae]) five additional viruses were identified: Southern cowpea mosaic virus (Sobemovirus genus), two previously uncharacterised polerovirus-like species (Family Luteoviridae), a previously uncharacterised tombusvirus-like species (Family Tombusviridae) and a previously uncharacterised mycotymovirus-like species (Family Tymoviridae). Overall, potyviruses were the most prevalent cowpea viruses (detected in 65.5% of samples) and the Southern Sudan zone of Burkina Faso was found to harbour the greatest degrees of viral diversity and viral prevalence. Partial genome sequences of the two novel polerovirus-like and tombusvirus-like species were determined and RT-PCR primers were designed for use in Burkina Faso to routinely detect all of these cowpea-associated viruses.


Assuntos
Comovirus/genética , Metagenômica , Vigna/virologia , Burkina Faso , Comovirus/classificação , Comovirus/isolamento & purificação , DNA Viral/química , DNA Viral/isolamento & purificação , DNA Viral/metabolismo , Luteoviridae/genética , Doenças das Plantas/virologia , Potyviridae/genética , Sementes/virologia , Análise de Sequência de DNA , Vigna/crescimento & desenvolvimento
6.
Mol Plant Microbe Interact ; 29(6): 447-57, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26959836

RESUMO

In response to the presence of compatible rhizobium bacteria, legumes form symbiotic organs called nodules on their roots. These nodules house nitrogen-fixing bacteroids that are a differentiated form of the rhizobium bacteria. In some legumes, the bacteroid differentiation comprises a dramatic cell enlargement, polyploidization, and other morphological changes. Here, we demonstrate that a peptidoglycan-modifying enzyme in Bradyrhizobium strains, a DD-carboxypeptidase that contains a peptidoglycan-binding SPOR domain, is essential for normal bacteroid differentiation in Aeschynomene species. The corresponding mutants formed bacteroids that are malformed and hypertrophied. However, in soybean, a plant that does not induce morphological differentiation of its symbiont, the mutation does not affect the bacteroids. Remarkably, the mutation also leads to necrosis in a large fraction of the Aeschynomene nodules, indicating that a normally formed peptidoglycan layer is essential for avoiding the induction of plant immune responses by the invading bacteria. In addition to exopolysaccharides, capsular polysaccharides, and lipopolysaccharides, whose role during symbiosis is well defined, our work demonstrates an essential role in symbiosis for yet another rhizobial envelope component, the peptidoglycan layer.


Assuntos
Bradyrhizobium/fisiologia , Fabaceae/microbiologia , Peptidoglicano/metabolismo , Simbiose/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Regulação Bacteriana da Expressão Gênica , Mutação , Fotossíntese
7.
Mol Plant Pathol ; 17(2): 236-46, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25962850

RESUMO

Xanthomonas albilineans, the causal agent of sugarcane leaf scald, is a bacterial plant pathogen that is mainly spread by infected cuttings and contaminated harvesting tools. However, some strains of this pathogen are known to be spread by aerial means and are able to colonize the phyllosphere of sugarcane before entering the host plant and causing disease. The objective of this study was to identify the molecular factors involved in the survival or growth of X. albilineans on sugarcane leaves. We developed a bioassay to test for the attachment of X. albilineans on sugarcane leaves using tissue-cultured plantlets grown in vitro. Six mutants of strain XaFL07-1 affected in surface polysaccharide production completely lost their capacity to survive on the sugarcane leaf surface. These mutants produced more biofilm in vitro and accumulated more cellular poly-ß-hydroxybutyrate than the wild-type strain. A mutant affected in the production of small molecules (including potential biosurfactants) synthesized by non-ribosomal peptide synthetases (NRPSs) attached to the sugarcane leaves as well as the wild-type strain. Surprisingly, the attachment of bacteria on sugarcane leaves varied among mutants of the rpf gene cluster involved in bacterial quorum sensing. Therefore, quorum sensing may affect polysaccharide production, or both polysaccharides and quorum sensing may be involved in the survival or growth of X. albilineans on sugarcane leaves.


Assuntos
Aderência Bacteriana , Viabilidade Microbiana , Folhas de Planta/microbiologia , Polissacarídeos Bacterianos/metabolismo , Percepção de Quorum , Saccharum/microbiologia , Xanthomonas/fisiologia , Biofilmes , Bioensaio , Hidroxibutiratos , Família Multigênica , Mutação/genética , Compostos Orgânicos , Peptídeo Sintases/metabolismo , Plasmídeos/metabolismo , Poliésteres , Propriedades de Superfície , Xanthomonas/genética , Xanthomonas/crescimento & desenvolvimento , Xanthomonas/ultraestrutura
8.
mBio ; 6(5): e01251-15, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26489859

RESUMO

UNLABELLED: A better understanding of how bacteria resist stresses encountered during the progression of plant-microbe symbioses will advance our ability to stimulate plant growth. Here, we show that the symbiotic system comprising the nitrogen-fixing bacterium Bradyrhizobium diazoefficiens and the legume Aeschynomene afraspera requires hopanoid production for optimal fitness. While methylated (2Me) hopanoids contribute to growth under plant-cell-like microaerobic and acidic conditions in the free-living state, they are dispensable during symbiosis. In contrast, synthesis of extended (C35) hopanoids is required for growth microaerobically and under various stress conditions (high temperature, low pH, high osmolarity, bile salts, oxidative stress, and antimicrobial peptides) in the free-living state and also during symbiosis. These defects might be due to a less rigid membrane resulting from the absence of free or lipidA-bound C35 hopanoids or the accumulation of the C30 hopanoid diploptene. Our results also show that C35 hopanoids are necessary for symbiosis only with the host Aeschynomene afraspera but not with soybean. This difference is likely related to the presence of cysteine-rich antimicrobial peptides in Aeschynomene nodules that induce drastic modification in bacterial morphology and physiology. The study of hopanoid mutants in plant symbionts thus provides an opportunity to gain insight into host-microbe interactions during later stages of symbiotic progression, as well as the microenvironmental conditions for which hopanoids provide a fitness advantage. IMPORTANCE: Because bradyrhizobia provide fixed nitrogen to plants, this work has potential agronomical implications. An understanding of how hopanoids facilitate bacterial survival in soils and plant hosts may aid the engineering of more robust agronomic strains, especially relevant in regions that are becoming warmer and saline due to climate change. Moreover, this work has geobiological relevance: hopanes, molecular fossils of hopanoids, are enriched in ancient sedimentary rocks at discrete intervals in Earth history. This is the first study to uncover roles for 2Me- and C35 hopanoids in the context of an ecological niche that captures many of the stressful environmental conditions thought to be important during (2Me)-hopane deposition. Though much remains to be done to determine whether the conditions present within the plant host are shared with niches of relevance to the rock record, our findings represent an important step toward identifying conserved mechanisms whereby hopanoids contribute to fitness.


Assuntos
Bradyrhizobium/metabolismo , Bradyrhizobium/fisiologia , Fabaceae/microbiologia , Simbiose , Triterpenos/metabolismo , Glycine max/microbiologia
9.
Nat Commun ; 5: 5106, 2014 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-25355435

RESUMO

Lipopolysaccharides (LPSs) are major components of the outer membrane of Gram-negative bacteria and are essential for their growth and survival. They act as a structural barrier and play an important role in the interaction with eukaryotic hosts. Here we demonstrate that a photosynthetic Bradyrhizobium strain, symbiont of Aeschynomene legumes, synthesizes a unique LPS bearing a hopanoid covalently attached to lipid A. Biophysical analyses of reconstituted liposomes indicate that this hopanoid-lipid A structure reinforces the stability and rigidity of the outer membrane. In addition, the bacterium produces other hopanoid molecules not linked to LPS. A hopanoid-deficient strain, lacking a squalene hopene cyclase, displays increased sensitivity to stressful conditions and reduced ability to survive intracellularly in the host plant. This unusual combination of hopanoid and LPS molecules may represent an adaptation to optimize bacterial survival in both free-living and symbiotic states.


Assuntos
Bradyrhizobium/fisiologia , Fabaceae/microbiologia , Lipídeo A/metabolismo , Nodulação , Nódulos Radiculares de Plantas/microbiologia , Triterpenos/metabolismo , Fabaceae/ultraestrutura , Lipídeo A/química , Estrutura Molecular , Nódulos Radiculares de Plantas/ultraestrutura , Simbiose
10.
Open Biol ; 4: 130116, 2014 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-24522883

RESUMO

Xanthomonas albilineans, the causal agent of sugarcane leaf scald, is missing the Hrp type III secretion system that is used by many Gram-negative bacteria to colonize their host. Until now, this pathogen was considered as strictly limited to the xylem of sugarcane. We used confocal laser scanning microscopy, immunocytochemistry and transmission electron microscopy (TEM) to investigate the localization of X. albilineans in diseased sugarcane. Sugarcane plants were inoculated with strains of the pathogen labelled with a green fluorescent protein. Confocal microscopy observations of symptomatic leaves confirmed the presence of the pathogen in the protoxylem and metaxylem; however, X. albilineans was also observed in phloem, parenchyma and bulliform cells of the infected leaves. Similarly, vascular bundles of infected sugarcane stalks were invaded by X. albilineans. Surprisingly, the pathogen was also observed in apparently intact storage cells of the stalk and in intercellular spaces between these cells. Most of these observations made by confocal microscopy were confirmed by TEM. The pathogen exits the xylem following cell wall and middle lamellae degradation, thus creating openings to reach parenchyma cells. This is the first description of a plant pathogenic vascular bacterium invading apparently intact non-vascular plant tissues and multiplying in parenchyma cells.


Assuntos
Genoma Bacteriano , Saccharum/microbiologia , Xanthomonas/genética , Xanthomonas/fisiologia , Microscopia Confocal , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Xanthomonas/patogenicidade , Xilema/microbiologia
11.
Virologie (Montrouge) ; 18(4): 201-210, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-33065932

RESUMO

Many viruses form inclusion bodies in infected plant and mammalian cells. Their formation often requires membrane rearrangement of various organelles, but some inclusions form in the cytoplasm independently of the endomembrane system. In the latter case, they may resemble aggresomes or stress bodies but many inclusions do not seem to be related to any cellular structures. Synthesis, composition and size of these inclusions change with virus species. The best characterized inclusions create a "viral organelle" protecting viruses from host defenses and optimizing viral replication and assembly. These inclusions are also called viral factories. Recently, more complex and original functions were described for viral factories. This is exemplified here for Cauliflower mosaic virus (CaMV) factories. Unexpectedly, besides replication, CaMV factories also participate in another crucial step of the viral cycle: vector-transmission by aphids.

12.
J Virol ; 87(22): 12207-15, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24006440

RESUMO

Cauliflower mosaic virus (CaMV) forms two types of inclusion bodies within infected plant cells: numerous virus factories, which are the sites for viral replication and virion assembly, and a single transmission body (TB), which is specialized for virus transmission by aphid vectors. The TB reacts within seconds to aphid feeding on the host plant by total disruption and redistribution of its principal component, the viral transmission helper protein P2, onto microtubules throughout the cell. At the same time, virions also associate with microtubules. This redistribution of P2 and virions facilitates transmission and is reversible; the TB reforms within minutes after vector departure. Although some virions are present in the TB before disruption, their subsequent massive accumulation on the microtubule network suggests that they also are released from virus factories. Using drug treatments, mutant viruses, and exogenous supply of viral components to infected protoplasts, we show that virions can rapidly exit virus factories and, once in the cytoplasm, accumulate together with the helper protein P2 on the microtubule network. Moreover, we show that during reversion of this phenomenon, virions from the microtubule network can either be incorporated into the reverted TB or return to the virus factories. Our results suggest that CaMV factories are dynamic structures that participate in vector transmission by controlled release and uptake of virions during TB reaction.


Assuntos
Afídeos/virologia , Brassica rapa/virologia , Caulimovirus/patogenicidade , Microtúbulos/virologia , Doenças das Plantas/virologia , Protoplastos/virologia , Replicação Viral , Animais , Afídeos/genética , Afídeos/metabolismo , Brassica rapa/genética , Brassica rapa/metabolismo , Imunofluorescência , Microtúbulos/genética , Microtúbulos/metabolismo , Proteínas Virais , Vírion/patogenicidade
13.
Mol Plant Microbe Interact ; 26(10): 1200-10, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23758144

RESUMO

Several EZ-Tn5 insertions in gene locus XALc_0557 (OmpA1) of the sugarcane leaf scald pathogen Xanthomonas albilineans XaFL07-1 were previously found to strongly affect pathogenicity and endophytic stalk colonization. XALc_0557 has a predicted OmpA N-terminal outer membrane channel (OMC) domain and an OmpA C-like domain. Further analysis of mutant M468, with an EZ-Tn5 insertion in the upstream OMC domain coding region, revealed impaired epiphytic and endophytic leaf survival, impaired resistance to sodium dodecyl sulfate (SDS), structural defects in the outer membrane (OM), and hyperproduction of OM vesicles. Cloned full-length XALc_0557 complemented M468 for all phenotypes tested, including pathogenicity, resistance to SDS, and ability to survive both endophytically and epiphytically. Another construct, pCT47.3, which expressed only the C-like domain of XALc_0557, restored resistance to SDS in M468 but failed to complement any other mutant phenotype, indicating that the C-like domain functioned independently of the OMC domain to help maintain OM integrity. pCT47.3 also complemented pathogenicity, resistance to SDS, and stalk colonization in mutant M1152, which carries an EZ-Tn5 insert in the C-like coding region, indicating that both predicted domains are modular and necessary but neither is sufficient for X. albilineans pathogenicity, endophytic survival in, and epiphytic survival on sugarcane.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Doenças das Plantas/microbiologia , Saccharum/microbiologia , Xanthomonas/genética , Proteínas da Membrana Bacteriana Externa/genética , Membrana Celular/metabolismo , DNA Bacteriano/química , DNA Bacteriano/genética , Teste de Complementação Genética , Microscopia Eletrônica de Transmissão , Mutagênese Insercional , Fenótipo , Folhas de Planta/microbiologia , Estrutura Terciária de Proteína , Análise de Sequência de DNA , Xanthomonas/metabolismo , Xanthomonas/patogenicidade , Xanthomonas/ultraestrutura
14.
Elife ; 2: e00183, 2013 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-23358702

RESUMO

Many plant and animal viruses are spread by insect vectors. Cauliflower mosaic virus (CaMV) is aphid-transmitted, with the virus being taken up from specialized transmission bodies (TB) formed within infected plant cells. However, the precise events during TB-mediated virus acquisition by aphids are unknown. Here, we show that TBs react instantly to the presence of the vector by ultra-rapid and reversible redistribution of their key components onto microtubules throughout the cell. Enhancing or inhibiting this TB reaction pharmacologically or by using a mutant virus enhanced or inhibited transmission, respectively, confirming its requirement for efficient virus-acquisition. Our results suggest that CaMV can perceive aphid vectors, either directly or indirectly by sharing the host perception. This novel concept in virology, where viruses respond directly or via the host to the outside world, opens new research horizons, that is, investigating the impact of 'perceptive behaviors' on other steps of the infection cycle.DOI:http://dx.doi.org/10.7554/eLife.00183.001.


Assuntos
Caulimovirus/patogenicidade , Insetos Vetores , Viroses/transmissão , Animais , Afídeos/virologia
15.
Appl Environ Microbiol ; 79(7): 2459-62, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23354704

RESUMO

The ability of photosynthetic Bradyrhizobium strains ORS285 and ORS278 to nodulate soybeans was investigated. While the nod gene-deficient ORS278 strain induced bumps only on soybean roots, the nod gene-containing ORS285 strain formed nitrogen-fixing nodules. However, symbiotic efficiencies differed drastically depending on both the soybean genotype used and the culture conditions tested.


Assuntos
Bradyrhizobium/crescimento & desenvolvimento , Bradyrhizobium/metabolismo , Glycine max/microbiologia , Fixação de Nitrogênio , Nódulos Radiculares de Plantas/microbiologia , Fotossíntese , Glycine max/crescimento & desenvolvimento
16.
Mol Plant Microbe Interact ; 24(11): 1359-71, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21995799

RESUMO

Here, we present a comparative analysis of the nodulation processes of Aeschynomene afraspera and A. indica that differ in their requirement for Nod factors (NF) to initiate symbiosis with photosynthetic bradyrhizobia. The infection process and nodule organogenesis was examined using the green fluorescent protein-labeled Bradyrhizobium sp. strain ORS285 able to nodulate both species. In A. indica, when the NF-independent strategy is used, bacteria penetrated the root intercellularly between axillary root hairs and invaded the subepidermal cortical cells by invagination of the host cell wall. Whereas the first infected cortical cells collapsed, the infected ones immediately beneath kept their integrity and divided repeatedly to form the nodule. In A. afraspera, when the NF-dependent strategy is used, bacteria entered the plant through epidermal fissures generated by the emergence of lateral roots and spread deeper intercellularly in the root cortex, infecting some cortical cells during their progression. Whereas the infected cells of the lower cortical layers divided rapidly to form the nodule, the infected cells of the upper layers gave rise to an outgrowth in which the bacteria remained enclosed in large tubular structures. Together, two distinct modes of infection and nodule organogenesis coexist in Aeschynomene legumes, each displaying original features.


Assuntos
Bradyrhizobium/fisiologia , Dalbergia/microbiologia , Fixação de Nitrogênio , Fotossíntese , Simbiose , Dalbergia/fisiologia , Microscopia Confocal , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Raízes de Plantas/microbiologia
17.
Arthropod Struct Dev ; 39(4): 221-9, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20170746

RESUMO

The recent demonstration that a plant virus could be retained on protein receptors located exclusively in a small area inside the common duct at the tip of aphid maxillary stylets indicated the possible existence of a distinct anatomical structure at this level. Since no distinct feature within the common duct of any aphid species has ever been reported in the literature, we first carefully re-examined the distal extremity of the maxillary stylets of Acyrthosiphon pisum using transmission- and scanning-electron microscopy. Here, we describe an area of the cuticle surface displaying a different structure that is limited to a "band" paving the bottom of the common duct in each opposing maxillary stylet. This band starts at the very distal extremity, adopts a "comma-like" shape as it continues up towards the salivary canal, reducing in width and disappearing before actually reaching it. Investigations on several aphid species led to the conclusion that this anatomical feature-which we have tentatively named the "acrostyle"-is highly conserved among aphids. We then produced an antibody recognizing a consensus peptide located in the middle of the RR-2 motif of cuticular proteins from A. pisum and showed that this motif is accessible specifically within the acrostyle, indicating a higher concentration of cuticular proteins. While it is clear that at least some viruses can use the acrostyle to interact with their aphid vectors to ensure plant-to-plant transmission, the role of this new "organ" in aphid biology is unknown and calls for further investigation in the near future.


Assuntos
Afídeos/anatomia & histologia , Animais , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão
18.
BMC Microbiol ; 10: 20, 2010 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-20102621

RESUMO

BACKGROUND: Human African trypanosomiasis is a lethal disease caused by the extracellular parasite Trypanosoma brucei. The proteins secreted by T. brucei inhibit the maturation of dendritic cells and their ability to induce lymphocytic allogenic responses. To better understand the pathogenic process, we combined different approaches to characterize these secreted proteins. RESULTS: Overall, 444 proteins were identified using mass spectrometry, the largest parasite secretome described to date. Functional analysis of these proteins revealed a strong bias toward folding and degradation processes and to a lesser extent toward nucleotide metabolism. These features were shared by different strains of T. brucei, but distinguished the secretome from published T. brucei whole proteome or glycosome. In addition, several proteins had not been previously described in Trypanosoma and some constitute novel potential therapeutic targets or diagnostic markers. Interestingly, a high proportion of these secreted proteins are known to have alternative roles once secreted. Furthermore, bioinformatic analysis showed that a significant proportion of proteins in the secretome lack transit peptide and are probably not secreted through the classical sorting pathway. Membrane vesicles from secretion buffer and infested rat serum were purified on sucrose gradient and electron microscopy pictures have shown 50- to 100-nm vesicles budding from the coated plasma membrane. Mass spectrometry confirmed the presence of Trypanosoma proteins in these microvesicles, showing that an active exocytosis might occur beyond the flagellar pocket. CONCLUSIONS: This study brings out several unexpected features of the secreted proteins and opens novel perspectives concerning the survival strategy of Trypanosoma as well as possible ways to control the disease. In addition, concordant lines of evidence support the original hypothesis of the involvement of microvesicle-like bodies in the survival strategy allowing Trypanosoma to exchange proteins at least between parasites and/or to manipulate the host immune system.


Assuntos
Proteômica/métodos , Proteínas de Protozoários/metabolismo , Trypanosoma brucei gambiense/fisiologia , Animais , Eletroforese em Gel de Poliacrilamida , Exocitose/fisiologia , Espectrometria de Massas , Proteoma/análise , Proteoma/metabolismo , Ratos , Trypanosoma brucei gambiense/classificação , Trypanosoma brucei gambiense/citologia , Tripanossomíase Africana/parasitologia
19.
Arch Virol ; 154(2): 255-62, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19151912

RESUMO

Maize streak virus (MSV, Mastrevirus, Geminiviridae) is persistently transmitted by Cicadulina mbila, apparently without propagation in its leafhopper vector. MSV was shown earlier by quantitative PCR to accumulate in the alimentary canal of C. mbila. We examined the alimentary canals of C. mbila leafhoppers that acquired MSV from diseased plants for various acquisition access periods (AAP) by immunofluorescence confocal laser scanning microscopy (iCLSM) and by immunogold labelling transmission electron microscopy (iTEM). Following a 7-day AAP and a 7-day inoculation period (IP) on healthy seedlings, MSV was detected by iCLSM mainly in the filter chamber and anterior midgut. Using iTEM, large accumulations of MSV particles, usually enclosed in membranous vesicles, were detected only in cells of the midgut, inside and outside the filter chamber, following 14- or 30-day AAPs, and also following 7-day AAP and 7-day IP on healthy plants. No virus was detected in the control non-vector species C. chinaï. Coated pits or vesicles, typical of clathrin-mediated endocytosis, were not observed. We discuss an alternative endocytosis pathway and suggest that the MSV accumulations are stored in endosomes in the midgut epithelial cells.


Assuntos
Trato Gastrointestinal/virologia , Hemípteros/virologia , Insetos Vetores/virologia , Vírus do Listrado do Milho/fisiologia , Doenças das Plantas/virologia , Zea mays/virologia , Animais , Endossomos/virologia , Células Epiteliais/virologia , Imuno-Histoquímica , Microscopia Eletrônica de Transmissão , Internalização do Vírus
20.
Plant J ; 58(1): 135-46, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19077170

RESUMO

Interactions between microtubules and viruses play important roles in viral infection. The best-characterized examples involve transport of animal viruses by microtubules to the nucleus or other intracellular destinations. In plant viruses, most work to date has focused on interaction between viral movement proteins and the cytoskeleton, which is thought to be involved in viral cell-to-cell spread. We show here, in Cauliflower mosaic virus (CaMV)-infected plant cells, that viral electron-lucent inclusion bodies (ELIBs), whose only known function is vector transmission, require intact microtubules for their efficient formation. The kinetics of the formation of CaMV-related inclusion bodies in transfected protoplasts showed that ELIBs represent newly emerging structures, appearing at late stages of the intracellular viral life cycle. Viral proteins P2 and P3 are first produced in multiple electron-dense inclusion bodies, and are later specifically exported to transiently co-localize with microtubules, before concentrating in a single, massive ELIB in each infected cell. Treatments with cytoskeleton-affecting drugs suggested that P2 and P3 might be actively transported on microtubules, by as yet unknown motors. In addition to providing information on the intracellular life cycle of CaMV, our results show that specific interactions between host cell and virus may be dedicated to a later role in vector transmission. More generally, they indicate a new unexpected function for plant cell microtubules in the virus life cycle, demonstrating that microtubules act not only on immediate intracellular or intra-host phenomena, but also on processes ultimately controlling inter-host transmission.


Assuntos
Brassica rapa/virologia , Caulimovirus/patogenicidade , Interações Hospedeiro-Patógeno , Corpos de Inclusão Viral/metabolismo , Microtúbulos/metabolismo , Animais , Brassica rapa/metabolismo , Caulimovirus/genética , Caulimovirus/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Soros Imunes/metabolismo , Insetos , Microscopia de Fluorescência , Células Vegetais/metabolismo , Células Vegetais/virologia , Doenças das Plantas/virologia , Transporte Proteico , Protoplastos/metabolismo , Protoplastos/virologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transfecção , Proteínas Virais/genética , Proteínas Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...