Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 21(17)2020 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-32872553

RESUMO

The cholinergic deficit in Alzheimer's disease (AD) may arise from selective loss of cholinergic neurons caused by the binding of Aß peptide to nicotinic acetylcholine receptors (nAChRs). Thus, compounds preventing such an interaction are needed to address the cholinergic dysfunction. Recent findings suggest that the 11EVHH14 site in Aß peptide mediates its interaction with α4ß2 nAChR. This site contains several charged amino acid residues, hence we hypothesized that the formation of Aß-α4ß2 nAChR complex is based on the interaction of 11EVHH14 with its charge-complementary counterpart in α4ß2 nAChR. Indeed, we discovered a 35HAEE38 site in α4ß2 nAChR, which is charge-complementary to 11EVHH14, and molecular modeling showed that a stable Aß42-α4ß2 nAChR complex could be formed via the 11EVHH14:35HAEE38 interface. Using surface plasmon resonance and bioinformatics approaches, we further showed that a corresponding tetrapeptide Ac-HAEE-NH2 can bind to Aß via 11EVHH14 site. Finally, using two-electrode voltage clamp in Xenopus laevis oocytes, we showed that Ac-HAEE-NH2 tetrapeptide completely abolishes the Aß42-induced inhibition of α4ß2 nAChR. Thus, we suggest that 35HAEE38 is a potential binding site for Aß on α4ß2 nAChR and Ac-HAEE-NH2 tetrapeptide corresponding to this site is a potential therapeutic for the treatment of α4ß2 nAChR-dependent cholinergic dysfunction in AD.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Peptídeos/farmacologia , Receptores Nicotínicos/metabolismo , Motivos de Aminoácidos , Animais , Sítios de Ligação/efeitos dos fármacos , Feminino , Humanos , Modelos Moleculares , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Peptídeos/química , Conformação Proteica , Receptores Nicotínicos/química , Ressonância de Plasmônio de Superfície , Xenopus laevis
2.
Front Pharmacol ; 10: 748, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31333465

RESUMO

The proteins of the Ly6 family have a three-finger folding as snake venom α-neurotoxins, targeting nicotinic acetylcholine receptors (nAChRs), and some of them, like mammalian secreted Ly6/uPAR protein (SLURP1) and membrane-attached Ly-6/neurotoxin (Lynx1), also interact with distinct nAChR subtypes. We believed that synthetic fragments of these endogenous proteins might open new ways for drug design because nAChRs are well-known targets for developing analgesics and drugs against neurodegenerative diseases. Since interaction with nAChRs was earlier shown for synthetic fragments of the α-neurotoxin central loop II, we synthesized a 15-membered fragment of human Lynx1, its form with two Cys residues added at the N- and C-termini and forming a disulfide, as well as similar forms of human SLURP1, SLURP2, and of Drosophila sleepless protein (SSS). The IC50 values measured in competition with radioiodinated α-bungarotoxin for binding to the membrane-bound Torpedo californica nAChR were 4.9 and 7.4 µM for Lynx1 and SSS fragments, but over 300 µM for SLURP1 or SLURP2 fragments. The affinity of these compounds for the α7 nAChR in the rat pituitary tumor-derived cell line GH4C1 was different: 13.1 and 147 µM for SSS and Lynx1 fragments, respectively. In competition for the ligand-binding domain of the α9 nAChR subunit, SSS and Lynx1 fragments had IC50 values of about 40 µM, which correlates with the value found for the latter with the rat α9α10 nAChR expressed in the Xenopus oocytes. Thus, the activity of these synthetic peptides against muscle-type and α9α10 nAChRs indicates that they may be useful in design of novel myorelaxants and analgesics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA