Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 14(4)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37421116

RESUMO

Synthetic peptides are promising structural and functional components of bioactive and tissue-engineering scaffolds. Here, we demonstrate the design of self-assembling nanofiber scaffolds based on peptide amphiphile (PA) molecules containing multi-functional histidine residues with trace metal (TM) coordination ability. The self-assembly of PAs and characteristics of PA nanofiber scaffolds along with their interaction with Zn, Cu, and Mn essential microelements were studied. The effects of TM-activated PA scaffolds on mammalian cell behavior, reactive oxygen species (ROS), and glutathione levels were shown. The study reveals the ability of these scaffolds to modulate adhesion, proliferation, and morphological differentiation of neuronal PC-12 cells, suggesting a particular role of Mn(II) in cell-matrix interaction and neuritogenesis. The results provide a proof-of-concept for the development of histidine-functionalized peptide nanofiber scaffolds activated with ROS- and cell-modulating TMs to induce regenerative responses.

2.
Artigo em Inglês | MEDLINE | ID: mdl-36593927

RESUMO

We study for the first time whether triphenylphosphonium (TPP) moiety can improve cellular delivery and redox properties of amphipathic cationic peptides based on YRFK/YrFK cell-penetrating and cytoprotective motif. TPP moiety was found to increase reducing activity of both stereoisomeric peptides in solution and on electrode surface in association with TPP-mediated intramolecular interactions. Among TPP-conjugated peptides, newly synthesized TPP3-YrFK featured both increased antioxidant efficacy and proteolytic resistance. TPP-conjugated peptides preferably mitigated endogenic ROS in mitochondria and cytoplasm of model glioblastoma cells with increased oxidative status. This anti-ROS effect was accompanied by mild reversible decrease of reduced glutathione level in the cells with relatively weak change in glutathione redox forms ratio. Such low interference with cell redox status is in accordance with non-cytotoxic nature of the compounds. Intracellular concentrations of label-free peptides were analyzed by LC-MS/MS, which showed substantial TPP-promoted penetration of YrFK motif across cell plasma membrane. However, according to ΔΨm analysis, TPP moiety did not profoundly enhance peptide interaction with mitochondrial inner membrane. Our study clarifies the role of TPP moiety in cellular delivery of amphipathic cationic oligopeptides. The results suggest TPP moiety as a multi-functional modifier for the oligopeptides which is capable of improving cellular pharmacokinetics and antioxidant activity as well as targeting increased ROS levels. The results encourage further investigation of TPP3-YrFK as a peptide antioxidant with multiple benefits.

3.
Mater Today Bio ; 16: 100443, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36311162

RESUMO

[This retracts the article DOI: 10.1016/j.mtbio.2021.100099.].

4.
Mater Today Bio ; 10: 100099, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33778465

RESUMO

The electroactivity as a supramolecular feature of intelligently designed self-assembled systems stimulates a wide interest in development of new stimuli-responsive biomaterials. A diverse set of nanostructures are fabricated through programmed self-assembly of molecules for functional materials. Electroactive groups are conjugated as a functional moiety for organic semiconductor applications. In this review, we present recent examples of self-assembling peptide molecules and electroactive units for supramolecular functional electronic â€‹and optical materials with potential biomedical and bioelectronics applications.

5.
Mater Sci Eng C Mater Biol Appl ; 120: 111660, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33545827

RESUMO

Synthetic oligopeptides are a promising alternative to natural full-length growth factors and extracellular matrix (ECM) proteins in tissue regeneration and therapeutic angiogenesis applications. In this work, angiogenic properties of dual and triple compositions containing RGD, GHK peptides and copper (II) ions (Cu2+) were for the first time studied. To reveal specific in vitro effects of these compositions in three-dimensional scaffold, adamantyl group bearing peptides, namely Ada-Ahx-GGRGD (1) and Ada-Ahx-GGGHK (2), were effectively immobilized in bioinert pHEMA macroporous cryogel via host-guest ß-cyclodextrin-adamantane interaction. The cryogels were additionally functionalized with Cu2+ via the formation of GHK-Cu complex. Angiogenic responses of HUVECs grown within the cryogel ECM model were analyzed. The results demonstrate that the combination of RGD with GHK and further with Cu2+ dramatically increases cell proliferation, differentiation, and production of a series of angiogenesis related cytokines and growth factors. Furthermore, the level of glutathione, a key cellular antioxidant and redox regulator, was altered in relation to the angiogenic effects. These results are of particular interest for establishing the role of multiple peptide signals on regeneration related processes and for developing improved tissue engineering materials.


Assuntos
Cobre , Criogéis , Oligopeptídeos/farmacologia , Peptídeos , Cicatrização
6.
ACS Appl Bio Mater ; 3(2): 1116-1128, 2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35019313

RESUMO

Oligopeptides are versatile cell modulators resembling pleiotropic activities of ECM proteins and growth factors. Studying the role of cell-instructive peptide signals within 3D scaffolds, yet poorly known, requires effective approaches to introducing bioactive sequences into appropriate materials. We synthesized RGD and GHK motif based peptides 1 and 2 linked to the terminal adamantyl group (Ad) and their fluorescent derivatives 3 and 4. Poly(hydroxyethyl methacrylate) (pHEMA) cryogels with additional PEG/ß-cyclodextrin (CD) units were prepared as an inert macroporous scaffold capable to bind the adamantylated peptides via affinity CD-Ad complexation. According to toluidine blue staining, the CD moieties were effectively and stably incorporated in the pHEMA cryogels at nanomolar amounts per milligram of material. The CD component gradually increased the thickness and swelling ability of the polymer walls of cryogels, resulting in a noticeable decrease in macropore size and modulation of viscoelastic properties. The labeled peptides exhibited fast kinetics of specific binding to the CD-modified cryogels and were simultaneously immobilized by coincubation. The peptide loading approached ca. 0.31 mg per cm2 of cryogel sheet. A well-defined mitogenic effect of the immobilized peptides (2 < 1≪ 1 + 2) was revealed toward 3T3 and PC-12 cells. The synergistic action of RGD and GHK peptides induced a profound change in cell behavior/morphology attributed to a growth-factor-like activity of the composition. Altogether, our results provide an effective procedure for the preparation of CD-modified pHEMA cryogels and their uniform in situ functionalization with bioactive peptide(s) of interest and an informative study of cellular responses in the functionalized scaffolds.

7.
Eur Biophys J ; 48(1): 25-34, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30105402

RESUMO

Chemical modification of therapeutic peptides is an important approach to improving their physicochemical and pharmacokinetic properties. The triphenylphosphonium (TPP) cation has proved to be a powerful modifier; however, its effects on peptide structure and activity remain uncharacterized. In this study, cytoprotective tetrapeptides based on the YRFK opioid motif with L- or D-Arg residues were linked to (triphenylphosphonio)carboxylic acids with ethylene and pentylene spacers (TPP-3 and TPP-6 groups, respectively). The three-dimensional structure of the oligopeptides was analyzed by NMR spectroscopy, computational methods and circular dichroism (CD). A more compact and bent structure with segregated aromatic groups was revealed for the D-arginine-containing tetrapeptide and its TPP-6 derivative. The TPP moiety caused structure-organizing effect on the tetrapeptides, resulting in transition from random coil to ß-sheet structures, and decreased the peptide backbone flexibility up to ten times. The TPP-3-modified oligopeptide with the lowest RMSD value (ca. 0.05 Å) was characterized by intrapeptide hydrophobic interactions between the TPP and side groups of Tyr and Phe residues accompanied by strong CD induction. The TPP-6-modified oligopeptides showed enhanced ability to form intermolecular associates and disturb liposomal membranes. The relationship between the spatial structure of the oligopeptides and some of their biologically relevant interactions were additionally revealed and are discussed.


Assuntos
Oligopeptídeos/química , Compostos Organofosforados/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Modelos Moleculares , Estereoisomerismo
8.
Macromol Biosci ; 19(1): e1800080, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29745025

RESUMO

Dentin phosphoprotein (DPP) is a major component of the dentin matrix playing crucial role in hydroxyapatite deposition during bone mineralization, making it a prime candidate for the design of novel materials for bone and tooth regeneration. The bioactivity of DPP-derived proteins is controlled by the phosphorylation and dephosphorylation of the serine residues. Here an enzyme-responsive peptide nanofiber system inducing biomineralization is demonstrated. It closely emulates the structural and functional properties of DPP and facilitates apatite-like mineral deposition. The DPP-mimetic peptide molecules self-assemble through dephosphorylation by alkaline phosphatase (ALP), an enzyme participating in tooth and bone matrix mineralization. Nanofiber network formation is also induced through addition of calcium ions. The gelation process following nanofiber formation produces a mineralized extracellular matrix like material, where scaffold properties and phosphate groups promote mineralization. It is demonstrated that the DPP-mimetic peptide nanofiber networks can be used for apatite-like mineral deposition for bone regeneration.


Assuntos
Materiais Biomiméticos , Regeneração Óssea/efeitos dos fármacos , Calcificação Fisiológica/efeitos dos fármacos , Proteínas da Matriz Extracelular , Nanofibras/química , Peptídeos , Fosfoproteínas , Sialoglicoproteínas , Materiais Biomiméticos/síntese química , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Linhagem Celular Tumoral , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/química , Proteínas da Matriz Extracelular/farmacologia , Humanos , Peptídeos/síntese química , Peptídeos/química , Peptídeos/farmacologia , Fosfoproteínas/química , Fosfoproteínas/farmacologia , Sialoglicoproteínas/química , Sialoglicoproteínas/farmacologia
9.
Front Pharmacol ; 9: 115, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29520232

RESUMO

Although delocalized lipophilic cations have been identified as effective cellular and mitochondrial carriers for a range of natural and synthetic drug molecules, little is known about their effects on pharmacological properties of peptides. The effect of triphenylphosphonium (TPP) cation on bioactivity of antioxidant tetrapeptides based on the model opioid YRFK motif was studied. Two tetrapeptide variants with L-arginine (YRFK) and D-arginine (YrFK) were synthesized and coupled with carboxyethyl-TPP (TPP-3) and carboxypentyl-TPP (TPP-6) units. The TPP moiety noticeably promoted YRFK cleavage by trypsin, but effectively prevented digestion of more resistant YrFK attributed, respectively, to structure-organizing and shielding effects of the TPP cation on conformational variants of the tetrapeptide motif. The TPP moiety enhanced radical scavenging activity of the modified YRFK in a model Fenton-like reaction, whereas decreased reactivity was revealed for both YrFK and its TPP derivative. The starting motifs and modified oligopeptides, especially the TPP-6 derivatives, suppressed acute oxidative stress in neuronal PC-12 cells during a brief exposure similarly with glutathione. The effect of oligopeptides was compared upon culturing of PC-12 cells with CoCl2, L-glutamic acid, or menadione to mimic physiologically relevant oxidative states. The cytoprotective activity of oligopeptides significantly depended on the type of oxidative factor, order of treatment and peptide structure. Pronounced cell-protective effect was established for the TPP-modified oligopeptides, which surpassed that of the unmodified motifs. The protease-resistant TPP-modified YrFK showed the highest activity when administered 24 h prior to the cell damage. Our results suggest that the TPP cation can be used as a modifier for small therapeutic peptides to improve their pharmacokinetic and pharmacological properties.

10.
Biomacromolecules ; 18(10): 3114-3130, 2017 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-28840715

RESUMO

Chirality and morphology are essential factors for protein function and interactions with other biomacromolecules. Extracellular matrix (ECM) proteins are also similar to other proteins in this sense; however, the complexity of the natural ECM makes it difficult to study these factors at the cellular level. The synthetic peptide nanomaterials harbor great promise in mimicking specific ECM molecules as model systems. In this work, we demonstrate that mechanosensory responses of stem cells are directly regulated by the chirality and morphology of ECM-mimetic peptide nanofibers with strictly controlled characteristics. Structural signals presented on l-amino acid containing cylindrical nanofibers (l-VV) favored the formation of integrin ß1-based focal adhesion complexes, which increased the osteogenic potential of stem cells through the activation of nuclear YAP. On the other hand, twisted ribbon-like nanofibers (l-FF and d-FF) guided the cells into round shapes and decreased the formation of focal adhesion complexes, which resulted in the confinement of YAP proteins in the cytosol and a corresponding decrease in osteogenic potential. Interestingly, the d-form of twisted-ribbon like nanofibers (d-FF) increased the chondrogenic potential of stem cells more than their l-form (l-FF). Our results provide new insights into the importance and relevance of morphology and chirality of nanomaterials in their interactions with cells and reveal that precise control over the chemical and physical properties of nanostructures can affect stem cell fate even without the incorporation of specific epitopes.


Assuntos
Mecanotransdução Celular , Células-Tronco Mesenquimais/efeitos dos fármacos , Nanofibras/química , Fragmentos de Peptídeos/química , Animais , Linhagem Celular , Células Cultivadas , Proteínas da Matriz Extracelular/química , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Nanofibras/efeitos adversos , Osteogênese , Ratos
11.
Sci Rep ; 6: 30587, 2016 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-27464476

RESUMO

Nanostructured hybrid heterojunctions have been studied widely for photocatalytic applications due to their superior optical and structural properties. In this work, the impact of angstrom thick atomic layer deposited (ALD) ZnO shell layer on photocatalytic activity (PCA) of hydrothermal grown single crystalline TiO2 nanowires (NWs) is systematically explored. We showed that a single cycle of ALD ZnO layer wrapped around TiO2 NWs, considerably boosts the PCA of the heterostructure. Subsequent cycles, however, gradually hinder the photocatalytic activity (PCA) of the TiO2 NWs. Various structural, optical, and transient characterizations are employed to scrutinize this unprecedented change. We show that a single atomic layer of ZnO shell not only increases light harvesting capability of the heterostructure via extension of the absorption toward visible wavelengths, but also mitigates recombination probability of carriers through reduction of surface defects density and introduction of proper charge separation along the core-shell interface. Furthermore, the ultrathin ZnO shell layer allows a strong contribution of the core (TiO2) valence band holes through tunneling across the ultrathin interface. All mechanisms responsible for this enhanced PCA of heterostructure are elucidated and corresponding models are proposed.

12.
ACS Appl Mater Interfaces ; 8(27): 17421-7, 2016 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-27315038

RESUMO

Template-directed synthesis of nanomaterials can provide benefits such as small crystalline size, high surface area, large surface-to-volume ratio, and structural stability. These properties are important for shorter distance in ion/electron movement and better electrode surface/electrolyte contact for energy storage applications. Here nanostructured FePO4 cathode materials were synthesized by using peptide nanostructures as a template inspired by biomineralization process. The amorphous, high surface area FePO4 nanostructures were utilized as a cathode for lithium-ion batteries. Discharge capacity of 155 mAh/g was achieved at C/20 current rate. The superior properties of biotemplated and nanostructured amorphous FePO4 are shown compared to template-free crystalline FePO4.

13.
Chem Commun (Camb) ; 51(62): 12470-3, 2015 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-26146021

RESUMO

Induced supramolecular chirality was investigated in the self-assembled peptide amphiphile (PA) nanosystems. Having shown that peptide chirality can be transferred to the covalently-attached achiral pyrene moiety upon PA self-assembly, the chiral information is transferred to molecular pyrene via weak noncovalent interactions. In the first design of a supramolecular chiral system, the chromophore was covalently attached to a peptide sequence (VVAGH) via an ε-aminohexanoic acid spacer. Covalent attachment yielded a PA molecule self-assembling into nanofibers. In the second design, the chromophore was encapsulated within the hydrophobic core of self-assembled nanofibers of another PA consisting of the same peptide sequence attached to lauric acid. We observed that supramolecular chirality was induced in the chromophore by PA assembly into chiral nanostructures, whether it was covalently attached, or noncovalently bound.


Assuntos
Nanofibras/química , Peptídeos/química , Dicroísmo Circular , Microscopia Eletrônica de Transmissão , Nanofibras/ultraestrutura , Estereoisomerismo
14.
Photochem Photobiol ; 90(6): 1376-86, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25131633

RESUMO

The design and synthesis of a phthalocyanine--Gd-DOTA conjugate is presented to open the way to novel molecular theranostics, combining the properties of MRI contrast imaging with photodynamic therapy. The rational design of the conjugate integrates isomeric purity of the phthalocyanine core substitution, suitable biocompatibility with the use of polyoxo water-solubilizing substituents, and a convergent synthetic strategy ended by the use of click chemistry to graft the Gd-DOTA moiety to the phthalocyanine. Photophysical and photochemical properties, contrast imaging experiments and preliminary in vitro investigations proved that such a combination is relevant and lead to a new type of potential theranostic agent.


Assuntos
Meios de Contraste , Compostos Heterocíclicos/administração & dosagem , Indóis/administração & dosagem , Imageamento por Ressonância Magnética/métodos , Compostos Organometálicos/administração & dosagem , Fármacos Fotossensibilizantes/farmacologia , Materiais Biocompatíveis , Compostos Heterocíclicos/química , Humanos , Indóis/química , Isoindóis , Células MCF-7 , Espectroscopia de Ressonância Magnética , Compostos Organometálicos/química , Espectrometria de Massas por Ionização por Electrospray
15.
Sci Rep ; 3: 2306, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23892593

RESUMO

A solvent-free fabrication of TiO2 and ZnO nanonetworks is demonstrated by using supramolecular nanotemplates with high coating conformity, uniformity, and atomic scale size control. Deposition of TiO2 and ZnO on three-dimensional nanofibrous network template is accomplished. Ultrafine control over nanotube diameter allows robust and systematic evaluation of the electrochemical properties of TiO2 and ZnO nanonetworks in terms of size-function relationship. We observe hypsochromic shift in UV absorbance maxima correlated with decrease in wall thickness of the nanotubes. Photocatalytic activities of anatase TiO2 and hexagonal wurtzite ZnO nanonetworks are found to be dependent on both the wall thickness and total surface area per unit of mass. Wall thickness has effect on photoexcitation properties of both TiO2 and ZnO due to band gap energies and total surface area per unit of mass. The present work is a successful example that concentrates on nanofabrication of intact three-dimensional semiconductor nanonetworks with controlled band gap energies.


Assuntos
Nanoestruturas/química , Titânio/química , Óxido de Zinco/química , Nanofibras/química , Nanofibras/ultraestrutura , Nanoestruturas/ultraestrutura , Nanotubos/química , Nanotubos/ultraestrutura , Tamanho da Partícula , Peptídeos/química , Fotoquímica , Semicondutores
16.
Chem Commun (Camb) ; 48(92): 11358-60, 2012 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-23073371

RESUMO

A bioinspired peptide amphiphile nanofiber template for formation of one-dimensional Pd nanostructures is demonstrated. The Pd and peptide nanocatalyst system enabled efficient catalytic activity in Suzuki coupling reactions in water at room temperature. The nanocatalyst system can be easily separated and reused in successive reactions without significant loss in activity and structural integrity.


Assuntos
Nanofibras/química , Paládio/química , Peptídeos/química , Catálise , Concentração de Íons de Hidrogênio , Nanofibras/ultraestrutura , Temperatura , Água/química
17.
Langmuir ; 27(3): 1079-84, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21214195

RESUMO

Mineralized biological materials such as shells, skeleton, and teeth experience biomineralization. Biomimetic materials exploit the biomineralization process to form functional organic-inorganic hybrid nanostructures. In this work, we mimicked the biomineralization process by the de novo design of an amyloid-like peptide that self-assembles into nanofibers. Chemically active groups enhancing the affinity for metal ions were used to accumulate silicon and titanium precursors on the organic template. The self-assembly process and template effect were characterized by CD, FT-IR, UV-vis, fluorescence, rheology, TGA, SEM, and TEM. The self-assembled organic nanostructures were exploited as a template to form high-aspect-ratio 1-D silica and titania nanostructures by the addition of appropriate precursors. Herein, a new bottom-up approach was demonstrated to form silica and titania nanostructures that can yield wide opportunities to produce high-aspect-ratio inorganic nanostructures with high surface areas. The materials developed in this work have vast potential in the fields of catalysis and electronic materials.


Assuntos
Nanoestruturas/química , Dióxido de Silício/química , Titânio/química , Cromatografia Líquida , Dicroísmo Circular , Espectrometria de Massas , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Estrutura Molecular , Nanoestruturas/ultraestrutura , Nanotecnologia , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...