Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Neurol ; 12: 646886, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34211428

RESUMO

Background: Mirror therapy is thought to drive interhemispheric communication, resulting in a balanced activation. We hypothesized that embodied virtual mirror visual feedback (VR-MVF) presented on a computer screen may produce a similar activation. In this proof-of-concept study, we investigated differences in movement-related cortical potentials (MRCPs) in the electroencephalogram (EEG) from different visual feedback of user movements in 1 stroke patient and 13 age-matched adults. Methods: A 60-year-old right-handed (Edinburgh score >95) male ischemic stroke [left paramedian pontine, National Institutes of Health Stroke Scale (NIHSS) = 6] patient and 13 age-matched right-handed (Edinburgh score >80) healthy adults (58 ± 9 years; six female) participated in the study. We recorded 16-electrode electroencephalogram (EEG), while participants performed planar center-out movements in two embodied visual feedback conditions: (i) direct (movements translated to the avatar's ipsilateral side) and (ii) mirror (movements translated to the avatar's contralateral side) with left (direct left/mirror left) or right (direct right/mirror right) arms. Results: As hypothesized, we observed more balanced MRCP hemispheric negativity in the mirror right compared to the direct right condition [statistically significant at the FC4 electrode; 99.9% CI, (0.81, 13)]. MRCPs in the stroke participant showed reduced lateralized negativity in the direct left (non-paretic) situation compared to healthy participants. Interestingly, the potentials were stronger in the mirror left (non-paretic) compared to direct left case, with significantly more bilateral negativity at FC3 [95% CI (0.758 13.2)] and C2 [95% CI (0.04 9.52)]. Conclusions: Embodied mirror visual feedback is likely to influence bilateral sensorimotor cortical subthreshold activity during movement preparation and execution observed in MRCPs in both healthy participants and a stroke patient.

2.
Ann Clin Transl Neurol ; 5(5): 651-663, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29761128

RESUMO

Brain-computer interfaces (BCIs) can provide sensory feedback of ongoing brain oscillations, enabling stroke survivors to modulate their sensorimotor rhythms purposefully. A number of recent clinical studies indicate that repeated use of such BCIs might trigger neurological recovery and hence improvement in motor function. Here, we provide a first meta-analysis evaluating the clinical effectiveness of BCI-based post-stroke motor rehabilitation. Trials were identified using MEDLINE, CENTRAL, PEDro and by inspection of references in several review articles. We selected randomized controlled trials that used BCIs for post-stroke motor rehabilitation and provided motor impairment scores before and after the intervention. A random-effects inverse variance method was used to calculate the summary effect size. We initially identified 524 articles and, after removing duplicates, we screened titles and abstracts of 473 articles. We found 26 articles corresponding to BCI clinical trials, of these, there were nine studies that involved a total of 235 post-stroke survivors that fulfilled the inclusion criterion (randomized controlled trials that examined motor performance as an outcome measure) for the meta-analysis. Motor improvements, mostly quantified by the upper limb Fugl-Meyer Assessment (FMA-UE), exceeded the minimal clinically important difference (MCID=5.25) in six BCI studies, while such improvement was reached only in three control groups. Overall, the BCI training was associated with a standardized mean difference of 0.79 (95% CI: 0.37 to 1.20) in FMA-UE compared to control conditions, which is in the range of medium to large summary effect size. In addition, several studies indicated BCI-induced functional and structural neuroplasticity at a subclinical level. This suggests that BCI technology could be an effective intervention for post-stroke upper limb rehabilitation. However, more studies with larger sample size are required to increase the reliability of these results.

3.
J Neuroeng Rehabil ; 14(1): 119, 2017 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-29149855

RESUMO

BACKGROUND: Technology-mediated neurorehabilitation is suggested to enhance training intensity and therefore functional gains. Here, we used a novel virtual reality (VR) system for task-specific upper extremity training after stroke. The system offers interactive exercises integrating motor priming techniques and embodied visuomotor feedback. In this pilot study, we examined (i) rehabilitation dose and training intensity, (ii) functional improvements, and (iii) safety and tolerance when exposed to intensive VR rehabilitation. METHODS: Ten outpatient stroke survivors with chronic (>6 months) upper extremity paresis participated in a ten-session VR-based upper limb rehabilitation program (2 sessions/week). RESULTS: All participants completed all sessions of the treatment. In total, they received a median of 403 min of upper limb therapy, with 290 min of effective training. Within that time, participants performed a median of 4713 goal-directed movements. Importantly, training intensity increased progressively across sessions from 13.2 to 17.3 movements per minute. Clinical measures show that despite being in the chronic phase, where recovery potential is thought to be limited, participants showed a median improvement rate of 5.3% in motor function (Fugl-Meyer Assessment for Upper Extremity; FMA-UE) post intervention compared to baseline, and of 15.4% at one-month follow-up. For three of them, this improvement was clinically significant. A significant improvement in shoulder active range of motion (AROM) was also observed at follow-up. Participants reported very low levels of pain, stress and fatigue following each session of training, indicating that the intensive VR intervention was well tolerated. No severe adverse events were reported. All participants expressed their interest in continuing the intervention at the hospital or even at home, suggesting high levels of adherence and motivation for the provided intervention. CONCLUSIONS: This pilot study showed how a dedicated VR system could deliver high rehabilitation doses and, importantly, intensive training in chronic stroke survivors. FMA-UE and AROM results suggest that task-specific VR training may be beneficial for further functional recovery both in the chronic stage of stroke. Longitudinal studies with higher doses and sample sizes are required to confirm the therapy effectiveness. TRIAL REGISTRATION: This trial was retrospectively registered at ClinicalTrials.gov database (registration number NCT03094650 ) on 14 March 2017.


Assuntos
Terapia por Exercício/métodos , Paresia/reabilitação , Reabilitação do Acidente Vascular Cerebral/métodos , Realidade Virtual , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Recuperação de Função Fisiológica , Acidente Vascular Cerebral , Interface Usuário-Computador
4.
J Neural Eng ; 10(3): 036014, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23611808

RESUMO

OBJECTIVE: Abundant literature suggests the use of slow cortical potentials (SCPs) in a wide spectrum of basic and applied neuroscience areas. Due to their low signal to noise ratio, these potentials are often studied using grand-average analysis, which conceals trial-to-trial information. Moreover, most of the single trial analysis methods in the literature are based on classical electroencephalogram (EEG) features ([1-30] Hz) and are likely to be unsuitable for SCPs that have different signal properties (such as having the signal's spectral content in the range [0.2-0.7] Hz). In this paper we provide insights into the selection of appropriate parameters for spectral and spatial filtering. APPROACH: We study anticipation related SCPs recorded using a web-browser application protocol and a full-band EEG (FbEEG) setup from 11 subjects on two different days. MAIN RESULTS: We first highlight the role of a bandpass with [0.1-1.0] Hz in comparison with common practices (e.g., either with full dc, just a lowpass, or with a minimal highpass cut-off around 0.05 Hz). Secondly, we suggest that a combination of spatial-smoothing filter and common average reference (CAR) is more suitable than the spatial filters often reported in the literature (e.g., re-referencing to an electrode, Laplacian or CAR alone). Thirdly, with the help of these preprocessing steps, we demonstrate the generalization capabilities of linear classifiers across several days (AUC of 0.88 ± 0.05 on average with a minimum of 0.81 ± 0.03 and a maximum of 0.97 ± 0.01). We also report the possibility of further improvements using a Bayesian fusion technique applied to electrode-specific classifiers. SIGNIFICANCE: We believe the suggested spatial and spectral preprocessing methods are advantageous for grand-average and single trial analysis of SCPs obtained from EEG, MEG as well as for electrocorticogram. The use of these methods will impact basic neurophysiological studies as well as the use of SCPs in the design of neuroprosthetics.


Assuntos
Antecipação Psicológica/fisiologia , Atenção/fisiologia , Mapeamento Encefálico/métodos , Córtex Cerebral/fisiologia , Comportamento de Escolha/fisiologia , Eletroencefalografia/métodos , Potenciais Evocados/fisiologia , Adulto , Algoritmos , Sinais (Psicologia) , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Processamento de Sinais Assistido por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...