Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 28(12): 125601, 2016 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-26912417

RESUMO

Electron spin resonance (ESR) of diluted Nd(3+) ions in the topologically nontrivial semimetallic (TNSM) YBiPt compound is reported. The cubic YBiPt compound is a non-centrosymmetric half Heusler material which crystallizes in the F43m space group. The low temperature Nd(3+) ESR spectra showed a g-value of 2.66(4) corresponding to a Γ6 cubic crystal field Kramers' doublet ground state. Remarkably, the observed metallic and diffusive (Dysonian) Nd(3+) lineshape presented an unusual dependence with grain size, microwave power, Nd(3+) concentration and temperature. Moreover, the spin dynamic of the localized Nd(3+) ions in YBiPt was found to be characteristic of a phonon-bottleneck regime. It is claimed that, in this regime for YBiPt, phonons are responsible for mediating the diffusion of the microwave energy absorbed at resonance by the Nd(3+) ions to the thermal bath throughout the skin depth (δ ≃ µm). We argue that this is only possible because of the existence of highly mobile conduction electrons inside the skin depth of YBiPt that are strongly coupled to the phonons by spin-orbit coupling. Therefore, our unexpected ESR results point to a coexistence of metallic and insulating behaviors within the skin depth of YBiPt. This scenario is discussed in the light of the TNSM properties of this compound.

2.
J Phys Condens Matter ; 27(14): 145701, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25786492

RESUMO

We report a combined study of external pressure and Cu-substitution on BaFe2As2 single crystals grown by the in-flux technique. At ambient pressure, the Cu-substitution is known to suppress the spin density wave (SDW) phase in pure BaFe2As2(T(SDW) ≈ 140 K) and to induce a superconducting (SC) dome with a maximum transition temperature T(c)(max) ≃ 4.2 K. This T(c)(max) is much lower than the T(c) ∼ 15-28 K achieved in the case of Ru, Ni and Co substitutions. Such a lower T(c) is attributed to a Cu(2+) magnetic pair-breaking effect. The latter is strongly suppressed by applied pressure, as shown herein, Tc can be significantly enhanced by applying high pressures. In this work, we investigated the pressure effects on Cu(2+) magnetic pair-breaking in the BaFe(2-x)Cu(x)As2 series. Around the optimal concentration (x(opd) = 0.11), all samples showed a substantial increase of T(c) as a function of pressure. Yet for those samples with a slightly higher doping level (over-doped regime), T(c) presented a dome-like shape with maximum T(c) ≃ 8 K. Remarkably interesting, the under-doped samples, e.g. x = 0.02 display a maximum pressure induced T(c) ≃ 30 K which is comparable to the maximum T(c)'s found for the pure compound under external pressures. Furthermore, the magnetoresistance effect as a function of pressure in the normal state of the x = 0.02 sample also presented an evolution consistent with the screening of the Cu(2+) local moments. These findings demonstrate that the Cu(2+) magnetic pair-breaking effect is completely suppressed by applying pressure in the low concentration regime of Cu(2+) substituted BaFe2As2.

3.
Sci Rep ; 4: 6543, 2014 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-25292360

RESUMO

The role of orbital differentiation on the emergence of superconductivity in the Fe-based superconductors remains an open question to the scientific community. In this investigation, we employ a suitable microscopic spin probe technique, namely Electron Spin Resonance (ESR), to investigate this issue on selected chemically substituted BaFe2As2 single crystals. As the spin-density wave (SDW) phase is suppressed, we observe a clear increase of the Fe 3d bands anisotropy along with their localization at the FeAs plane. Such an increase of the planar orbital content is interestingly independent of the chemical substitution responsible for suppressing the SDW phase. As a consequence, the magnetic fluctuations in combination with this particular symmetry of the Fe 3d bands are propitious ingredients for the emergence of superconductivity in this class of materials.

4.
Sci Rep ; 4: 6252, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25176407

RESUMO

The possible existence of a sign-changing gap symmetry in BaFe2As2-derived superconductors (SC) has been an exciting topic of research in the last few years. To further investigate this subject we combine Electron Spin Resonance (ESR) and pressure-dependent transport measurements to investigate magnetic pair-breaking effects on BaFe1.9M0.1As2 (M = Mn, Co, Cu, and Ni) single crystals. An ESR signal, indicative of the presence of localized magnetic moments, is observed only for M = Cu and Mn compounds, which display very low SC transition temperature (Tc) and no SC, respectively. From the ESR analysis assuming the absence of bottleneck effects, the microscopic parameters are extracted to show that this reduction of Tc cannot be accounted by the Abrikosov-Gorkov pair-breaking expression for a sign-preserving gap function. Our results reveal an unconventional spin- and pressure-dependent pair-breaking effect and impose strong constraints on the pairing symmetry of these materials.

5.
Phys Rev Lett ; 107(26): 267402, 2011 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-22243180

RESUMO

The Fe K x-ray absorption near edge structure of BaFe(2-x)Co(x)As(2) superconductors was investigated. No appreciable alteration in shape or energy position of this edge was observed with Co substitution. This result provides experimental support to previous ab initio calculations in which the extra Co electron is concentrated at the substitute site and do not change the electronic occupation of the Fe ions. Superconductivity may emerge due to bonding modifications induced by the substitute atom that weakens the spin-density-wave ground state by reducing the Fe local moments and/or increasing the elastic energy penalty of the accompanying orthorhombic distortion.

6.
Phys Rev Lett ; 105(10): 107001, 2010 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-20867539

RESUMO

In contrast with the simultaneous structural and magnetic first order phase transition T0 previously reported, our detailed investigation on an underdoped Ba(0.84)K(0.16)Fe2As2 single crystal unambiguously revealed that the transitions are not concomitant. The tetragonal (τ: I4/mmm)-orthorhombic (ϑ: Fmmm) structural transition occurs at T(S)≃110 K, followed by an adjacent long-range antiferromagnetic (AFM) transition at T(N)≃102 K. Hysteresis and coexistence of the τ and ϑ phases over a finite temperature range observed by NMR experiments confirm the first order character of the τ-ϑ transition and provide evidence that both T(S) and T(N) are strongly correlated. Our data also show that superconductivity develops in the ϑ phase below T(c)=20 K and coexists with AFM. This new observation, T(S)≠T(N), firmly establishes another similarity between the hole-doped BaFe2As2 and the electron-doped iron-arsenide superconductors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA