Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 295(49): 16562-16571, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-32948655

RESUMO

Phospholipase Cε (PLCε) is activated downstream of G protein-coupled receptors and receptor tyrosine kinases through direct interactions with small GTPases, including Rap1A and Ras. Although Ras has been reported to allosterically activate the lipase, it is not known whether Rap1A has the same ability or what its molecular mechanism might be. Rap1A activates PLCε in response to the stimulation of ß-adrenergic receptors, translocating the complex to the perinuclear membrane. Because the C-terminal Ras association (RA2) domain of PLCε was proposed to the primary binding site for Rap1A, we first confirmed using purified proteins that the RA2 domain is indeed essential for activation by Rap1A. However, we also showed that the PLCε pleckstrin homology (PH) domain and first two EF hands (EF1/2) are required for Rap1A activation and identified hydrophobic residues on the surface of the RA2 domain that are also necessary. Small-angle X-ray scattering showed that Rap1A binding induces and stabilizes discrete conformational states in PLCε variants that can be activated by the GTPase. These data, together with the recent structure of a catalytically active fragment of PLCε, provide the first evidence that Rap1A, and by extension Ras, allosterically activate the lipase by promoting and stabilizing interactions between the RA2 domain and the PLCε core.


Assuntos
Fosfoinositídeo Fosfolipase C/metabolismo , Proteínas rap1 de Ligação ao GTP/metabolismo , Regulação Alostérica , GTP Fosfo-Hidrolases/metabolismo , Humanos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Fosfoinositídeo Fosfolipase C/química , Fosfoinositídeo Fosfolipase C/genética , Domínios de Homologia à Plecstrina , Ligação Proteica , Domínios Proteicos , Estrutura Terciária de Proteína , Transporte Proteico , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Espalhamento a Baixo Ângulo , Difração de Raios X , Proteínas rap1 de Ligação ao GTP/química , Proteínas rap1 de Ligação ao GTP/genética
2.
Commun Biol ; 3(1): 445, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32796910

RESUMO

Phospholipase Cε (PLCε) generates lipid-derived second messengers at the plasma and perinuclear membranes in the cardiovascular system. It is activated in response to a wide variety of signals, such as those conveyed by Rap1A and Ras, through a mechanism that involves its C-terminal Ras association (RA) domains (RA1 and RA2). However, the complexity and size of PLCε has hindered its structural and functional analysis. Herein, we report the 2.7 Å crystal structure of the minimal fragment of PLCε that retains basal activity. This structure includes the RA1 domain, which forms extensive interactions with other core domains. A conserved amphipathic helix in the autoregulatory X-Y linker of PLCε is also revealed, which we show modulates activity in vitro and in cells. The studies provide the structural framework for the core of this critical cardiovascular enzyme that will allow for a better understanding of its regulation and roles in disease.


Assuntos
Fosfoinositídeo Fosfolipase C/química , Fosfoinositídeo Fosfolipase C/metabolismo , Sequências Reguladoras de Ácido Nucleico/genética , Animais , Cristalografia por Raios X , Estabilidade Enzimática , Modelos Biológicos , Mutação/genética , Domínios Proteicos , Estrutura Secundária de Proteína , Ratos , Temperatura de Transição
4.
Cell Signal ; 62: 109349, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31254604

RESUMO

Phospholipase Cß (PLCß) enzymes regulate second messenger production following the activation of G protein-coupled receptors (GPCRs). Under basal conditions, these enzymes are maintained in an autoinhibited state by multiple elements, including an insertion within the catalytic domain known as the X-Y linker. Although the PLCß X-Y linker is variable in sequence and length, its C-terminus is conserved and features an acidic stretch, followed by a short helix. This helix interacts with residues near the active site, acting as a lid to sterically prevent substrate binding. However, deletions that remove the acidic stretch of the X-Y linker increase basal activity to the same extent as deletion of the entire X-Y linker. Thus, the acidic stretch may be the linchpin in autoinhibition mediated by the X-Y linker. We used site-directed mutagenesis and biochemical assays to investigate the importance of this acidic charge in mediating PLCß3 autoinhibition. Loss of the acidic charge in the X-Y linker increases basal activity and decreases stability, consistent with loss of autoinhibition. However, introduction of compensatory electrostatic mutations on the surface of the PLCß3 catalytic domain restore activity to basal levels. Thus, intramolecular electrostatics modulate autoinhibition by the X-Y linker.


Assuntos
Domínio Catalítico/genética , Fosfolipase C beta/genética , Conformação Proteica em alfa-Hélice , Eletricidade Estática , Humanos , Mutagênese Sítio-Dirigida , Fosfolipase C beta/antagonistas & inibidores , Fosforilação , Receptores Acoplados a Proteínas G/genética
5.
J Biol Chem ; 293(45): 17477-17490, 2018 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-30242131

RESUMO

Phospholipase C (PLC) enzymes produce second messengers that increase the intracellular Ca2+ concentration and activate protein kinase C (PKC). These enzymes also share a highly conserved arrangement of core domains. However, the contributions of the individual domains to regulation are poorly understood, particularly in isoforms lacking high-resolution information, such as PLCϵ. Here, we used small-angle X-ray scattering (SAXS), EM, and functional assays to gain insights into the molecular architecture of PLCϵ, revealing that its PH domain is conformationally dynamic and essential for activity. We further demonstrate that the PH domain of PLCß exhibits similar dynamics in solution that are substantially different from its conformation observed in multiple previously reported crystal structures. We propose that this conformational heterogeneity contributes to subfamily-specific differences in activity and regulation by extracellular signals.


Assuntos
Simulação de Dinâmica Molecular , Domínios de Homologia à Plecstrina , Fosfolipases Tipo C/química , Animais , Humanos , Mutação , Ratos , Fosfolipases Tipo C/genética , Fosfolipases Tipo C/metabolismo
6.
J Biol Chem ; 293(17): 6387-6397, 2018 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-29535186

RESUMO

Phospholipase C (PLC) enzymes hydrolyze membrane phosphatidylinositol 4,5 bisphosphate (PIP2) and regulate Ca2+ and protein kinase signaling in virtually all mammalian cell types. Chronic activation of the PLCϵ isoform downstream of G protein-coupled receptors (GPCRs) contributes to the development of cardiac hypertrophy. We have previously shown that PLCϵ-catalyzed hydrolysis of Golgi-associated phosphatidylinositol 4-phosphate (PI4P) in cardiac myocytes depends on G protein ßγ subunits released upon stimulation with endothelin-1. PLCϵ binds and is directly activated by Ras family small GTPases, but whether they directly interact with Gßγ has not been demonstrated. To identify PLCϵ domains that interact with Gßγ, here we designed various single substitutions and truncations of WT PLCϵ and tested them for activation by Gßγ in transfected COS-7 cells. Deletion of only a single domain in PLCϵ was not sufficient to completely block its activation by Gßγ, but blocked activation by Ras. Simultaneous deletion of the C-terminal RA2 domain and the N-terminal CDC25 and cysteine-rich domains completely abrogated PLCϵ activation by Gßγ, but activation by the GTPase Rho was retained. In vitro reconstitution experiments further revealed that purified Gßγ directly interacts with a purified fragment of PLCϵ (PLCϵ-PH-RA2) and increases PIP2 hydrolysis. Deletion of the RA2 domain decreased Gßγ binding and eliminated Gßγ stimulation of PIP2 hydrolysis. These results provide first evidence that Gßγ directly interacts with PLCϵ and yield insights into the mechanism by which ßγ subunits activate PLCϵ.


Assuntos
Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Complexo de Golgi/enzimologia , Miócitos Cardíacos/enzimologia , Fosfoinositídeo Fosfolipase C/metabolismo , Fosfatases cdc25/metabolismo , Animais , Células COS , Chlorocebus aethiops , Endotelina-1/genética , Endotelina-1/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/genética , Subunidades gama da Proteína de Ligação ao GTP/genética , Complexo de Golgi/genética , Miócitos Cardíacos/citologia , Fosfatos de Fosfatidilinositol/genética , Fosfatos de Fosfatidilinositol/metabolismo , Fosfoinositídeo Fosfolipase C/genética , Domínios Proteicos , Ratos , Fosfatases cdc25/genética , Proteínas rho de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/metabolismo
7.
PLoS Negl Trop Dis ; 6(1): e1478, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22292096

RESUMO

BACKGROUND: Many neglected tropical infectious diseases affecting humans are transmitted by arthropods such as mosquitoes and ticks. New mode-of-action chemistries are urgently sought to enhance vector management practices in countries where arthropod-borne diseases are endemic, especially where vector populations have acquired widespread resistance to insecticides. METHODOLOGY/PRINCIPAL FINDINGS: We describe a "genome-to-lead" approach for insecticide discovery that incorporates the first reported chemical screen of a G protein-coupled receptor (GPCR) mined from a mosquito genome. A combination of molecular and pharmacological studies was used to functionally characterize two dopamine receptors (AaDOP1 and AaDOP2) from the yellow fever mosquito, Aedes aegypti. Sequence analyses indicated that these receptors are orthologous to arthropod D(1)-like (Gα(s)-coupled) receptors, but share less than 55% amino acid identity in conserved domains with mammalian dopamine receptors. Heterologous expression of AaDOP1 and AaDOP2 in HEK293 cells revealed dose-dependent responses to dopamine (EC(50): AaDOP1 = 3.1±1.1 nM; AaDOP2 = 240±16 nM). Interestingly, only AaDOP1 exhibited sensitivity to epinephrine (EC(50) = 5.8±1.5 nM) and norepinephrine (EC(50) = 760±180 nM), while neither receptor was activated by other biogenic amines tested. Differential responses were observed between these receptors regarding their sensitivity to dopamine agonists and antagonists, level of maximal stimulation, and constitutive activity. Subsequently, a chemical library screen was implemented to discover lead chemistries active at AaDOP2. Fifty-one compounds were identified as "hits," and follow-up validation assays confirmed the antagonistic effect of selected compounds at AaDOP2. In vitro comparison studies between AaDOP2 and the human D(1) dopamine receptor (hD(1)) revealed markedly different pharmacological profiles and identified amitriptyline and doxepin as AaDOP2-selective compounds. In subsequent Ae. aegypti larval bioassays, significant mortality was observed for amitriptyline (93%) and doxepin (72%), confirming these chemistries as "leads" for insecticide discovery. CONCLUSIONS/SIGNIFICANCE: This research provides a "proof-of-concept" for a novel approach toward insecticide discovery, in which genome sequence data are utilized for functional characterization and chemical compound screening of GPCRs. We provide a pipeline useful for future prioritization, pharmacological characterization, and expanded chemical screening of additional GPCRs in disease-vector arthropods. The differential molecular and pharmacological properties of the mosquito dopamine receptors highlight the potential for the identification of target-specific chemistries for vector-borne disease management, and we report the first study to identify dopamine receptor antagonists with in vivo toxicity toward mosquitoes.


Assuntos
Aedes/efeitos dos fármacos , Aedes/fisiologia , Avaliação Pré-Clínica de Medicamentos/métodos , Inseticidas/farmacologia , Receptores Dopaminérgicos/efeitos dos fármacos , Receptores Dopaminérgicos/metabolismo , Animais , Linhagem Celular , Agonistas de Dopamina/metabolismo , Antagonistas de Dopamina/metabolismo , Feminino , Expressão Gênica , Humanos , Masculino , Receptores Dopaminérgicos/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...