Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1945, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38431663

RESUMO

Early development of the gut ecosystem is crucial for lifelong health. While infant gut bacterial communities have been studied extensively, the infant gut virome remains under-explored. To study the development of the infant gut virome over time and the factors that shape it, we longitudinally assess the composition of gut viruses and their bacterial hosts in 30 women during and after pregnancy and in their 32 infants during their first year of life. Using shotgun metagenomic sequencing applied to dsDNA extracted from Virus-Like Particles (VLPs) and bacteria, we generate 205 VLP metaviromes and 322 total metagenomes. With this data, we show that while the maternal gut virome composition remains stable during late pregnancy and after birth, the infant gut virome is dynamic in the first year of life. Notably, infant gut viromes contain a higher abundance of active temperate phages compared to maternal gut viromes, which decreases over the first year of life. Moreover, we show that the feeding mode and place of delivery influence the gut virome composition of infants. Lastly, we provide evidence of co-transmission of viral and bacterial strains from mothers to infants, demonstrating that infants acquire some of their virome from their mother's gut.


Assuntos
Bacteriófagos , Microbioma Gastrointestinal , Microbiota , Vírus , Lactente , Humanos , Feminino , Gravidez , Mães , Bacteriófagos/genética , Bactérias/genética
2.
ISME Commun ; 3(1): 116, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37945978

RESUMO

Human milk microbiome studies are currently hindered by low milk bacterial/human cell ratios and often rely on 16S rRNA gene sequencing, which limits downstream analyses. Here, we aimed to find a method to study milk bacteria and assess bacterial sharing between maternal and infant microbiota. We tested four DNA isolation methods, two bacterial enrichment methods and three sequencing methods on mock communities, milk samples and negative controls. Of the four DNA isolation kits, the DNeasy PowerSoil Pro (PS) and MagMAX Total Nucleic Acid Isolation (MX) kits provided consistent 16S rRNA gene sequencing results with low contamination. Neither enrichment method substantially decreased the human metagenomic sequencing read-depth. Long-read 16S-ITS-23S rRNA gene sequencing biased the mock community composition but provided consistent results for milk samples, with little contamination. In contrast to 16S rRNA gene sequencing, 16S-ITS-23S rRNA gene sequencing of milk, infant oral, infant faecal and maternal faecal DNA from 14 mother-infant pairs provided sufficient resolution to detect significantly more frequent sharing of bacteria between related pairs compared to unrelated pairs. In conclusion, PS or MX kit-DNA isolation followed by 16S rRNA gene sequencing reliably characterises human milk microbiota, and 16S-ITS-23S rRNA gene sequencing enables studies of bacterial transmission in low-biomass samples.

3.
Viruses ; 14(10)2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36298860

RESUMO

The human gut harbors numerous viruses infecting the human host, microbes, and other inhabitants of the gastrointestinal tract. Most of these viruses remain undiscovered, and their influence on human health is unknown. Here, we characterize viral genomes in gut metagenomic data from 1950 individuals from four population and patient cohorts. We focus on a subset of viruses that is highly abundant in the gut, remains largely uncharacterized, and allows confident complete genome identification­phages that belong to the class Caudoviricetes and possess genome terminal repeats. We detect 1899 species-level units belonging to this subset, 19% of which do not have complete representative genomes in major public gut virome databases. These units display diverse genomic features, are predicted to infect a wide range of microbial hosts, and on average account for <1% of metagenomic reads. Analysis of longitudinal data from 338 individuals shows that the composition of this fraction of the virome remained relatively stable over a period of 4 years. We also demonstrate that 54 species-level units are highly prevalent (detected in >5% of individuals in a cohort). Finally, we find 34 associations between highly prevalent phages and human phenotypes, 24 of which can be explained by the relative abundance of potential hosts.


Assuntos
Bacteriófagos , Vírus , Humanos , Metagenoma , Bacteriófagos/genética , Metagenômica , Vírus/genética , Genoma Viral , Sequências Repetidas Terminais
4.
Cell Rep ; 38(2): 110204, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35021085

RESUMO

The crAss-like phages are a diverse group of related viruses that includes some of the most abundant viruses of the human gut. To explore their diversity and functional role in human population and clinical cohorts, we analyze gut metagenomic data collected from 1,950 individuals from the Netherlands. We identify 1,556 crAss-like phage genomes, including 125 species-level and 32 genus-level clusters absent from the reference databases used. Analysis of their genomic features shows that closely related crAss-like phages can possess strikingly divergent regions responsible for transcription, presumably acquired through recombination. Prediction of crAss-like phage hosts points primarily to bacteria of the phylum Bacteroidetes, consistent with previous reports. Finally, we explore the temporal stability of crAss-like phages over a 4-year period and identify associations between the abundance of crAss-like phages and several human phenotypes, including depletion of crAss-like phages in inflammatory bowel disease patients.


Assuntos
Bacteriófagos/genética , Microbioma Gastrointestinal/genética , Metagenoma/genética , Adulto , Idoso , Bactérias/genética , Bactérias/virologia , Feminino , Genoma Viral , Humanos , Doenças Inflamatórias Intestinais/virologia , Masculino , Metagenômica/métodos , Pessoa de Meia-Idade , Países Baixos , Obesidade/virologia , Filogenia
5.
Hum Mol Genet ; 31(7): 1159-1170, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-34875050

RESUMO

Telomeres are repetitive DNA sequences located at the end of chromosomes, which are associated to biological aging, cardiovascular disease, cancer and mortality. Lipid and fatty acid metabolism have been associated with telomere shortening. We have conducted an in-depth study investigating the association of metabolic biomarkers with telomere length (LTL). We performed an association analysis of 226 metabolic biomarkers with LTL using data from 11 775 individuals from six independent population-based cohorts (BBMRI-NL consortium). Metabolic biomarkers include lipoprotein lipids and subclasses, fatty acids, amino acids, glycolysis measures and ketone bodies. LTL was measured by quantitative polymerase chain reaction or FlowFISH. Linear regression analysis was performed adjusting for age, sex, lipid-lowering medication and cohort-specific covariates (model 1) and additionally for body mass index (BMI) and smoking (model 2), followed by inverse variance-weighted meta-analyses (significance threshold Pmeta = 6.5 × 10-4). We identified four metabolic biomarkers positively associated with LTL, including two cholesterol to lipid ratios in small VLDL (S-VLDL-C % and S-VLDL-CE %) and two omega-6 fatty acid ratios (FAw6/FA and LA/FA). After additionally adjusting for BMI and smoking, these metabolic biomarkers remained associated with LTL with similar effect estimates. In addition, cholesterol esters in very small VLDL (XS-VLDL-CE) became significantly associated with LTL (P = 3.6 × 10-4). We replicated the association of FAw6/FA with LTL in an independent dataset of 7845 individuals (P = 1.9 × 10-4). To conclude, we identified multiple metabolic biomarkers involved in lipid and fatty acid metabolism that may be involved in LTL biology. Longitudinal studies are needed to exclude reversed causation.


Assuntos
Leucócitos , Encurtamento do Telômero , Biomarcadores/metabolismo , Estudos Transversais , Ácidos Graxos/metabolismo , Humanos , Leucócitos/metabolismo , Lipídeos , Telômero/genética
6.
Cell Rep ; 35(7): 109132, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34010651

RESUMO

The human gut microbiome consists of bacteria, archaea, eukaryotes, and viruses. The gut viruses are relatively underexplored. Here, we longitudinally analyzed the gut virome composition in 11 healthy adults: its stability, variation, and the effect of a gluten-free diet. Using viral enrichment and a de novo assembly-based approach, we demonstrate the quantitative dynamics of the gut virome, including dsDNA, ssDNA, dsRNA, and ssRNA viruses. We observe highly divergent individual viral communities, carrying on an average 2,143 viral genomes, 13.1% of which were present at all 3 time points. In contrast to previous reports, the Siphoviridae family dominates over Microviridae in studied individual viromes. We also show individual viromes to be stable at the family level but to vary substantially at the genera and species levels. Finally, we demonstrate that lower initial diversity of the human gut virome leads to a more pronounced effect of the dietary intervention on its composition.


Assuntos
Dieta Livre de Glúten/métodos , Microbioma Gastrointestinal/imunologia , Viroma/imunologia , Humanos
7.
Cell ; 184(9): 2302-2315.e12, 2021 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-33838112

RESUMO

By following up the gut microbiome, 51 human phenotypes and plasma levels of 1,183 metabolites in 338 individuals after 4 years, we characterize microbial stability and variation in relation to host physiology. Using these individual-specific and temporally stable microbial profiles, including bacterial SNPs and structural variations, we develop a microbial fingerprinting method that shows up to 85% accuracy in classifying metagenomic samples taken 4 years apart. Application of our fingerprinting method to the independent HMP cohort results in 95% accuracy for samples taken 1 year apart. We further observe temporal changes in the abundance of multiple bacterial species, metabolic pathways, and structural variation, as well as strain replacement. We report 190 longitudinal microbial associations with host phenotypes and 519 associations with plasma metabolites. These associations are enriched for cardiometabolic traits, vitamin B, and uremic toxins. Finally, mediation analysis suggests that the gut microbiome may influence cardiometabolic health through its metabolites.


Assuntos
Bactérias/genética , Proteínas de Bactérias/metabolismo , Microbioma Gastrointestinal , Metaboloma , Metagenoma , Microbiota , Adulto , Idoso , Idoso de 80 Anos ou mais , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/metabolismo , Proteínas de Bactérias/genética , Resistência Microbiana a Medicamentos , Fezes/microbiologia , Feminino , Instabilidade Genômica , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Fenótipo , Polimorfismo de Nucleotídeo Único , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Adulto Jovem
8.
Biol Psychiatry ; 87(5): 409-418, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31635762

RESUMO

BACKGROUND: Depression has been associated with metabolic alterations, which adversely impact cardiometabolic health. Here, a comprehensive set of metabolic markers, predominantly lipids, was compared between depressed and nondepressed persons. METHODS: Nine Dutch cohorts were included, comprising 10,145 control subjects and 5283 persons with depression, established with diagnostic interviews or questionnaires. A proton nuclear magnetic resonance metabolomics platform provided 230 metabolite measures: 51 lipids, fatty acids, and low-molecular-weight metabolites; 98 lipid composition and particle concentration measures of lipoprotein subclasses; and 81 lipid and fatty acids ratios. For each metabolite measure, logistic regression analyses adjusted for gender, age, smoking, fasting status, and lipid-modifying medication were performed within cohort, followed by random-effects meta-analyses. RESULTS: Of the 51 lipids, fatty acids, and low-molecular-weight metabolites, 21 were significantly related to depression (false discovery rate q < .05). Higher levels of apolipoprotein B, very-low-density lipoprotein cholesterol, triglycerides, diglycerides, total and monounsaturated fatty acids, fatty acid chain length, glycoprotein acetyls, tyrosine, and isoleucine and lower levels of high-density lipoprotein cholesterol, acetate, and apolipoprotein A1 were associated with increased odds of depression. Analyses of lipid composition indicators confirmed a shift toward less high-density lipoprotein and more very-low-density lipoprotein and triglyceride particles in depression. Associations appeared generally consistent across gender, age, and body mass index strata and across cohorts with depressive diagnoses versus symptoms. CONCLUSIONS: This large-scale meta-analysis indicates a clear distinctive profile of circulating lipid metabolites associated with depression, potentially opening new prevention or treatment avenues for depression and its associated cardiometabolic comorbidity.


Assuntos
Depressão , Metabolômica , Biomarcadores , Ácidos Graxos , Humanos , Triglicerídeos
9.
BMC Biol ; 17(1): 84, 2019 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-31660953

RESUMO

The human gut harbors a complex ecosystem of microorganisms, including bacteria and viruses. With the rise of next-generation sequencing technologies, we have seen a quantum leap in the study of human-gut-inhabiting bacteria, yet the viruses that infect these bacteria, known as bacteriophages, remain underexplored. In this review, we focus on what is known about the role of bacteriophages in human health and the technical challenges involved in studying the gut virome, of which they are a major component. Lastly, we discuss what can be learned from studies of bacteriophages in other ecosystems.


Assuntos
Bacteriófagos/fisiologia , Microbioma Gastrointestinal/fisiologia , Metagenoma , Humanos , Metagenômica
10.
Nat Commun ; 10(1): 4881, 2019 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-31653850

RESUMO

Macrophage-mediated inflammation is thought to have a causal role in osteoarthritis-related pain and severity, and has been suggested to be triggered by endotoxins produced by the gastrointestinal microbiome. Here we investigate the relationship between joint pain and the gastrointestinal microbiome composition, and osteoarthritis-related knee pain in the Rotterdam Study; a large population based cohort study. We show that abundance of Streptococcus species is associated with increased knee pain, which we validate by absolute quantification of Streptococcus species. In addition, we replicate these results in 867 Caucasian adults of the Lifelines-DEEP study. Finally we show evidence that this association is driven by local inflammation in the knee joint. Our results indicate the microbiome is a possible therapeutic target for osteoarthritis-related knee pain.


Assuntos
Artralgia/microbiologia , Microbioma Gastrointestinal/genética , Osteoartrite do Joelho/microbiologia , Actinobacteria , Adulto , Anti-Inflamatórios não Esteroides/uso terapêutico , Artralgia/imunologia , Artrite/imunologia , Artrite/microbiologia , Bacteroidetes , Estudos de Coortes , Feminino , Firmicutes , Humanos , Inflamação/imunologia , Inflamação/microbiologia , Masculino , Pessoa de Meia-Idade , Obesidade , Osteoartrite do Joelho/imunologia , Proteobactérias , Inibidores da Bomba de Prótons/uso terapêutico , RNA Ribossômico 16S/genética , Streptococcus
11.
Genes (Basel) ; 10(9)2019 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-31527408

RESUMO

A wealth of viral data sits untapped in publicly available metagenomic data sets when it might be extracted to create a usable index for the virological research community. We hypothesized that work of this complexity and scale could be done in a hackathon setting. Ten teams comprised of over 40 participants from six countries, assembled to create a crowd-sourced set of analysis and processing pipelines for a complex biological data set in a three-day event on the San Diego State University campus starting 9 January 2019. Prior to the hackathon, 141,676 metagenomic data sets from the National Center for Biotechnology Information (NCBI) Sequence Read Archive (SRA) were pre-assembled into contiguous assemblies (contigs) by NCBI staff. During the hackathon, a subset consisting of 2953 SRA data sets (approximately 55 million contigs) was selected, which were further filtered for a minimal length of 1 kb. This resulted in 4.2 million (Mio) contigs, which were aligned using BLAST against all known virus genomes, phylogenetically clustered and assigned metadata. Out of the 4.2 Mio contigs, 360,000 contigs were labeled with domains and an additional subset containing 4400 contigs was screened for virus or virus-like genes. The work yielded valuable insights into both SRA data and the cloud infrastructure required to support such efforts, revealing analysis bottlenecks and possible workarounds thereof. Mainly: (i) Conservative assemblies of SRA data improves initial analysis steps; (ii) existing bioinformatic software with weak multithreading/multicore support can be elevated by wrapper scripts to use all cores within a computing node; (iii) redesigning existing bioinformatic algorithms for a cloud infrastructure to facilitate its use for a wider audience; and (iv) a cloud infrastructure allows a diverse group of researchers to collaborate effectively. The scientific findings will be extended during a follow-up event. Here, we present the applied workflows, initial results, and lessons learned from the hackathon.


Assuntos
Computação em Nuvem/normas , Genoma Viral , Metagenoma , Metagenômica/métodos , Big Data , Genoma Humano , Humanos , Metagenômica/normas , Software
12.
Gut Microbes ; 10(3): 358-366, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30373468

RESUMO

Several gastrointestinal diseases show a sex imbalance, although the underlying (patho)physiological mechanisms behind this are not well understood. The gut microbiome may be involved in this process, forming a complex interaction with host immune system, sex hormones, medication and other environmental factors. Here we performed sex-specific analyses of fecal microbiota composition in 1135 individuals from a population-based cohort. The overall gut microbiome composition of females and males was significantly different (p = 0.001), with females showing a greater microbial diversity (p = 0.009). After correcting for the effects of intrinsic factors, smoking, diet and medications, female hormonal factors such as the use of oral contraceptives and undergoing an ovariectomy were associated with microbial species and pathways. Females had a higher richness of antibiotic-resistance genes, with the most notable being resistance to the lincosamide nucleotidyltransferase (LNU) gene family. The higher abundance of resistance genes is consistent with the greater prescription of the Macrolide-Lincosamide-Streptogramin classes of antibiotics to females. Furthermore, we observed an increased resistance to aminoglycosides in females with self-reported irritable bowel syndrome. These results throw light upon the effects of common medications that are differentially prescribed between sexes and highlight the importance of sex-specific analysis when studying the gut microbiome and resistome.


Assuntos
Antibacterianos/farmacologia , Biodiversidade , Resistência Microbiana a Medicamentos/genética , Microbioma Gastrointestinal/genética , Metagenoma/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Fezes/microbiologia , Feminino , Genes Bacterianos/genética , Humanos , Síndrome do Intestino Irritável/microbiologia , Lincosamidas/farmacologia , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Fatores Sexuais , Adulto Jovem
13.
Hum Mol Genet ; 27(R2): R187-R194, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29668946

RESUMO

A vast, complex and dynamic consortium of microorganisms known as the gut microbiome colonizes the human gut. Over the past few decades, we have developed an increased awareness of its important role in human health. In this review we discuss the role of the gut microbiome in complex diseases and the possible causal scenarios behind its interactions with the host genome and environmental factors. We then propose a new analysis framework that combines a systems biology approach, cross-kingdom integration of multiple levels of omics data, and innovative in vitro models to yield an integrated picture of human host-microbe interactions. This new framework will lay the foundation for the development of the next phase in personalized medicine.


Assuntos
Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/fisiologia , Biologia de Sistemas/métodos , Doença/etiologia , Interação Gene-Ambiente , Interações entre Hospedeiro e Microrganismos/fisiologia , Humanos , Metabolômica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...