Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMJ Open Sport Exerc Med ; 7(1): e000876, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33680499

RESUMO

OBJECTIVES: In this study, we investigated daily fluctuations in molecular (gene expression) and physiological (biomechanical muscle properties) features in human peripheral cells and their correlation with exercise performance. METHODS: 21 healthy participants (13 men and 8 women) took part in three test series: for the molecular analysis, 15 participants provided hair, blood or saliva time-course sampling for the rhythmicity analysis of core-clock gene expression via RT-PCR. For the exercise tests, 16 participants conducted strength and endurance exercises at different times of the day (9h, 12h, 15h and 18h). Myotonometry was carried out using a digital palpation device (MyotonPRO), five muscles were measured in 11 participants. A computational analysis was performed to relate core-clock gene expression, resting muscle tone and exercise performance. RESULTS: Core-clock genes show daily fluctuations in expression in all biological samples tested for all participants. Exercise performance peaks in the late afternoon (15-18 hours for both men and women) and shows variations in performance, depending on the type of exercise (eg, strength vs endurance). Muscle tone varies across the day and higher muscle tone correlates with better performance. Molecular daily profiles correlate with daily variation in exercise performance. CONCLUSION: Training programmes can profit from these findings to increase efficiency and fine-tune timing of training sessions based on the individual molecular data. Our results can benefit both professional athletes, where a fraction of seconds may allow for a gold medal, and rehabilitation in clinical settings to increase therapy efficacy and reduce recovery times.

2.
Oncoimmunology ; 8(6): e1586409, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31069154

RESUMO

The degree and type of T cell infiltration influence rectal cancer prognosis regardless of classical tumor staging. We asked whether clonal expansion and tumor infiltration are restricted to selected-phenotype T cells; which clones are accessible in peripheral blood; and what the spatial distribution of their target antigens is. From five rectal cancer patients, we isolated paired tumor-infiltrating T cells (TILs) and T cells from unaffected rectum mucosa (TUM) using 13-parameter FACS single cell index sorting. TCRαß sequences, cytokine, and transcription factor expression were determined with single cell sequencing. TILs and TUM occupied distinct phenotype compartments and clonal expansion predominantly occurred within CD8+ T cells. Expanded TIL clones identified by paired TCRαß sequencing and exclusively detectable in the tumor showed characteristic PD-1 and TIM-3 expression. TCRß repertoire sequencing identified 49 out of 149 expanded TIL clones circulating in peripheral blood and 41 (84%) of these were PD-1- TIM-3-. To determine whether clonal expansion of predominantly tumor-infiltrating T cell clones was driven by antigens uniquely presented in tumor tissue, selected TCRs were reconstructed and incubated with cells isolated from corresponding tumor or unaffected mucosa. The majority of clones exclusively detected in the tumor recognized antigen at both sites. In summary, rectal cancer is infiltrated with expanded distinct-phenotype T cell clones that either i) predominantly infiltrate the tumor, ii) predominantly infiltrate the unaffected mucosa, or iii) overlap between tumor, unaffected mucosa, and peripheral blood. However, the target antigens of predominantly tumor-infiltrating TIL clones do not appear to be restricted to tumor tissue.

3.
Artigo em Inglês | MEDLINE | ID: mdl-25819740

RESUMO

Different chemical substances, which enter the environment due to anthropogenic influences, can affect the endocrine system and influence development and physiology of aquatic animals. One of these endocrine disrupting chemicals is the synthetic estrogen, 17α-ethinylestradiol (EE2), which is a main component of various oral contraceptives and demonstrably affects many different aquatic vertebrates at extremely low concentrations by feminization phenomena. The aim of the present study was to investigate whether a four week exposure to three different concentrations of EE2 (0.3 ng/L, 29.6 ng/L and 2960 ng/L) affects the catabolism of hemoglobin of the amphibian Xenopus laevis. The results of this study demonstrate for the first time that beside an increase of the hepatic vitellogenin gene expression, exposure to EE2 also decreases the gene expression of the hepatic heme oxygenase 1 and 2 (HO1, HO2), degrading heme of different heme proteins to biliverdin, as well as of the biliverdin reductase A (BLVRA), which converts biliverdin to bilirubin. The results further suggest that EE2 already at the environmentally relevant concentration of (29.6 ng/L) can disrupt hemoglobin catabolism, indicated by decreased gene expression of HO2, which becomes evident at the highest EE2 concentration that led to a severe increase of biliverdin in plasma.


Assuntos
Disruptores Endócrinos/toxicidade , Etinilestradiol/toxicidade , Hemoglobinas/metabolismo , Fígado/efeitos dos fármacos , Baço/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Xenopus laevis/fisiologia , Animais , Biliverdina/sangue , Biliverdina/metabolismo , Biomarcadores/sangue , Biomarcadores/metabolismo , Estrogênios/toxicidade , Regulação da Expressão Gênica/efeitos dos fármacos , Heme Oxigenase (Desciclizante)/genética , Heme Oxigenase (Desciclizante)/metabolismo , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Fígado/enzimologia , Fígado/metabolismo , Masculino , Concentração Osmolar , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , RNA Mensageiro/metabolismo , Baço/enzimologia , Baço/metabolismo , Vitelogeninas/genética , Vitelogeninas/metabolismo , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...