Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Int J Mol Sci ; 25(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38542224

RESUMO

Regulation of mRNA translation is a crucial step in controlling gene expression in stressed cells, impacting many pathologies, including heart ischemia. In recent years, ribosome heterogeneity has emerged as a key control mechanism driving the translation of subsets of mRNAs. In this study, we investigated variations in ribosome composition in human cardiomyocytes subjected to endoplasmic reticulum stress induced by tunicamycin treatment. Our findings demonstrate that this stress inhibits global translation in cardiomyocytes while activating internal ribosome entry site (IRES)-dependent translation. Analysis of translating ribosome composition in stressed and unstressed cardiomyocytes was conducted using mass spectrometry. We observed no significant changes in ribosomal protein composition, but several mitochondrial ribosomal proteins (MRPs) were identified in cytosolic polysomes, showing drastic variations between stressed and unstressed cells. The most notable increase in polysomes of stressed cells was observed in MRPS15. Its interaction with ribosomal proteins was confirmed by proximity ligation assay (PLA) and immunoprecipitation, suggesting its intrinsic role as a ribosomal component during stress. Knock-down or overexpression experiments of MRPS15 revealed its role as an activator of IRES-dependent translation. Furthermore, polysome profiling after immunoprecipitation with anti-MRPS15 antibody revealed that the "MRPS15 ribosome" is specialized in translating mRNAs involved in the unfolded protein response.


Assuntos
Miócitos Cardíacos , Proteínas Ribossômicas , Humanos , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Miócitos Cardíacos/metabolismo , Ribossomos/metabolismo , Polirribossomos/metabolismo , Citosol/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sítios Internos de Entrada Ribossomal , Biossíntese de Proteínas
2.
Int J Mol Sci ; 25(1)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38203852

RESUMO

Circular RNAs (circRNAs) are a recently characterized family of gene transcripts forming a covalently closed loop of single-stranded RNA. The extent of their potential for fine-tuning gene expression is still being discovered. Several studies have implicated certain circular RNAs in pathophysiological processes within vascular endothelial cells and cancer cells independently. However, to date, no comparative study of circular RNA expression in different types of endothelial cells has been performed and analysed through the lens of their central role in vascular physiology and pathology. In this work, we analysed publicly available and original RNA sequencing datasets from arterial, veinous, and lymphatic endothelial cells to identify common and distinct circRNA expression profiles. We identified 4713 distinct circRNAs in the compared endothelial cell types, 95% of which originated from exons. Interestingly, the results show that the expression profile of circular RNAs is much more specific to each cell type than linear RNAs, and therefore appears to be more suitable for distinguishing between them. As a result, we have discovered a specific circRNA signature for each given endothelial cell type. Furthermore, we identified a specific endothelial cell circRNA signature that is composed four circRNAs: circCARD6, circPLXNA2, circCASC15 and circEPHB4. These circular RNAs are produced by genes that are related to endothelial cell migration pathways and cancer progression. More detailed studies of their functions could lead to a better understanding of the mechanisms involved in physiological and pathological (lymph)angiogenesis and might open new ways to tackle tumour spread through the vascular system.


Assuntos
Células Endoteliais , RNA Circular , RNA Circular/genética , Motivos de Nucleotídeos , RNA/genética , Movimento Celular
3.
EMBO Mol Med ; 16(2): 386-415, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38177539

RESUMO

Secondary lymphedema (LD) corresponds to a severe lymphatic dysfunction leading to the accumulation of fluid and fibrotic adipose tissue in a limb. Here, we identified apelin (APLN) as a powerful molecule for regenerating lymphatic function in LD. We identified the loss of APLN expression in the lymphedematous arm compared to the normal arm in patients. The role of APLN in LD was confirmed in APLN knockout mice, in which LD is increased and associated with fibrosis and dermal backflow. This was reversed by intradermal injection of APLN-lentivectors. Mechanistically, APLN stimulates lymphatic endothelial cell gene expression and induces the binding of E2F8 transcription factor to the promoter of CCBE1 that controls VEGF-C processing. In addition, APLN induces Akt and eNOS pathways to stimulate lymphatic collector pumping. Our results show that APLN represents a novel partner for VEGF-C to restore lymphatic function in both initial and collecting vessels. As LD appears after cancer treatment, we validated the APLN-VEGF-C combination using a novel class of nonintegrative RNA delivery LentiFlash® vector that will be evaluated for phase I/IIa clinical trial.


Assuntos
Linfedema , Fator C de Crescimento do Endotélio Vascular , Camundongos , Animais , Humanos , Apelina/genética , Fator C de Crescimento do Endotélio Vascular/genética , RNA Mensageiro , Linfedema/genética , Linfedema/terapia , Camundongos Knockout
4.
Biochimie ; 217: 42-53, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37640229

RESUMO

Long non-coding (lnc) RNAs, once considered as junk and useless, are now broadly recognized to have major functions in the cell. LncRNAs are defined as non-coding RNAs of more than 200 nucleotides, regulate all steps of gene expression. Their origin is diverse, they can arise from intronic, intergenic or overlapping region, in sense or antisense direction. LncRNAs are mainly described for their action on transcription, while their action at the translational level is more rarely cited. However, the bibliography in the field is more and more abundant. The present synopsis of lncRNAs involved in the control of translation reveals a wide field of regulation of gene expression, with at least nine distinct molecular mechanisms. Furthermore, it appears that all these lncRNAs are involved in various pathologies including cancer, cardiovascular and neurodegenerative diseases.


Assuntos
Neoplasias , Doenças Neurodegenerativas , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias/genética , Doenças Neurodegenerativas/genética
6.
Elife ; 112022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36546462

RESUMO

Internal ribosome entry sites (IRESs) drive translation initiation during stress. In response to hypoxia, (lymph)angiogenic factors responsible for tissue revascularization in ischemic diseases are induced by the IRES-dependent mechanism. Here, we searched for IRES trans-acting factors (ITAFs) active in early hypoxia in mouse cardiomyocytes. Using knock-down and proteomics approaches, we show a link between a stressed-induced nuclear body, the paraspeckle, and IRES-dependent translation. Furthermore, smiFISH experiments demonstrate the recruitment of IRES-containing mRNA into paraspeckle during hypoxia. Our data reveal that the long non-coding RNA Neat1, an essential paraspeckle component, is a key translational regulator, active on IRESs of (lymph)angiogenic and cardioprotective factor mRNAs. In addition, paraspeckle proteins p54nrb and PSPC1 as well as nucleolin and RPS2, two p54nrb-interacting proteins identified by mass spectrometry, are ITAFs for IRES subgroups. Paraspeckle thus appears as a platform to recruit IRES-containing mRNAs and possibly host IRESome assembly. Polysome PCR array shows that Neat1 isoforms regulate IRES-dependent translation and, more widely, translation of mRNAs involved in stress response.


Assuntos
RNA Longo não Codificante , Animais , Camundongos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Paraspeckles , Transativadores/metabolismo , Polirribossomos/metabolismo , Hipóxia/genética , Hipóxia/metabolismo , Biossíntese de Proteínas
7.
Mol Cancer Ther ; 20(12): 2433-2445, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34552006

RESUMO

The PI3K pathway is highly active in human cancers. The four class I isoforms of PI3K are activated by distinct mechanisms leading to a common downstream signaling. Their downstream redundancy is thought to be responsible for treatment failures of PI3K inhibitors. We challenged this concept, by mapping the differential phosphoproteome evolution in response to PI3K inhibitors with different isoform-selectivity patterns in pancreatic cancer, a disease currently without effective therapy. In this cancer, the PI3K signal was shown to control cell proliferation. We compared the effects of LY294002 that inhibit with equal potency all class I isoenzymes and downstream mTOR with the action of inhibitors with higher isoform selectivity toward PI3Kα, PI3Kß, or PI3Kγ (namely, A66, TGX-221 and AS-252424). A bioinformatics global pathway analysis of phosphoproteomics data allowed us to identify common and specific signals activated by PI3K inhibitors supported by the biological data. AS-252424 was the most effective treatment and induced apoptotic pathway activation as well as the highest changes in global phosphorylation-regulated cell signal. However, AS-252424 treatment induced reactivation of Akt, therefore decreasing the treatment outcome on cell survival. Reversely, AS-252424 and A66 combination treatment prevented p-Akt reactivation and led to synergistic action in cell lines and patient organoids. The combination of clinically approved α-selective BYL-719 with γ-selective IPI-549 was more efficient than single-molecule treatment on xenograft growth. Mapping unique adaptive signaling responses to isoform-selective PI3K inhibition will help to design better combinative treatments that prevent the induction of selective compensatory signals.


Assuntos
Neoplasias Pancreáticas/tratamento farmacológico , Inibidores de Fosfoinositídeo-3 Quinase/uso terapêutico , Proteômica/métodos , Animais , Linhagem Celular Tumoral , Resistência a Medicamentos , Humanos , Camundongos , Neoplasias Pancreáticas/patologia , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia
8.
Sci Rep ; 11(1): 16801, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34413352

RESUMO

The lymphatic network of mammalian heart is an important regulator of interstitial fluid compartment and immune cell trafficking. We observed a remodeling of the cardiac lymphatic vessels and a reduced lymphatic efficiency during heart hypertrophy and failure induced by transverse aortic constriction. The lymphatic endothelial cell number of the failing hearts was positively correlated with cardiac function and with a subset of cardiac macrophages. This macrophage population distinguished by LYVE-1 (Lymphatic vessel endothelial hyaluronic acid receptor-1) and by resident macrophage gene expression signature, appeared not replenished by CCR2 mediated monocyte infiltration during pressure overload. Isolation of macrophage subpopulations showed that the LYVE-1 positive subset sustained in vitro and in vivo lymphangiogenesis through the expression of pro-lymphangiogenic factors. In contrast, the LYVE-1 negative macrophage subset strongly expressed MMP12 and decreased the endothelial LYVE-1 receptors in lymphatic endothelial cells, a feature of cardiac lymphatic remodeling in failing hearts. The treatment of mice with a CCR2 antagonist during pressure overload modified the proportion of macrophage subsets within the pathological heart and preserved lymphatic network from remodeling. This study reports unknown and differential functions of macrophage subpopulations in the regulation of cardiac lymphatic during pathological hypertrophy and may constitute a key mechanism underlying the progression of heart failure.


Assuntos
Vasos Linfáticos/metabolismo , Macrófagos/metabolismo , Miocárdio/patologia , Pressão , Animais , Benzoxazinas/farmacologia , Células CHO , Polaridade Celular/efeitos dos fármacos , Cricetulus , Eletrocardiografia , Células Endoteliais/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Linfangiogênese/efeitos dos fármacos , Vasos Linfáticos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Monócitos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores CCR2/metabolismo , Compostos de Espiro/farmacologia , Transcriptoma , Proteínas de Transporte Vesicular/metabolismo
9.
Cancers (Basel) ; 13(12)2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34200994

RESUMO

In cancer, the lymphatic system is hijacked by tumor cells that escape from primary tumor and metastasize to the sentinel lymph nodes. Tumor lymphangiogenesis is stimulated by the vascular endothelial growth factors-C (VEGFC) after binding to its receptor VEGFR-3. However, how VEGFC cooperates with other molecules to promote lymphatics growth has not been fully determined. We showed that lymphangiogenesis developed in tumoral lesions and in surrounding adipose tissue (AT). Interestingly, lymphatic vessel density correlated with an increase in circulating free fatty acids (FFA) in the lymph from tumor-bearing mice. We showed that adipocyte-released FFA are uploaded by lymphatic endothelial cells (LEC) to stimulate their sprouting. Lipidomic analysis identified the monounsaturated oleic acid (OA) as the major circulating FFA in the lymph in a tumoral context. OA transporters FATP-3, -6 and CD36 were only upregulated on LEC in the presence of VEGFC showing a collaborative effect of these molecules. OA stimulates fatty acid ß-oxidation in LECs, leading to increased AT lymphangiogenesis. Our results provide new insights on the dialogue between tumors and adipocytes via the lymphatic system and identify a key role for adipocyte-derived FFA in the promotion of lymphangiogenesis, revealing novel therapeutic opportunities for inhibitors of lymphangiogenesis in cancer.

10.
Cancers (Basel) ; 13(3)2021 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-33573286

RESUMO

Lymphedema is a disorder of the lymphatic vascular system characterized by impaired lymphatic return resulting in swelling of the extremities and accumulation of undrained interstitial fluid/lymph that results in fibrosis and adipose tissue deposition in the limb. Whereas it is clearly established that primary lymphedema is sex-linked with an average ratio of one male for three females, the role of female hormones, in particular estrogens, has been poorly explored. In addition, secondary lymphedema in Western countries affects mainly women who developed the pathology after breast cancer and undergo through hormone therapy up to five years after cancer surgery. Although lymphadenectomy is identified as a trigger factor, the effect of co-morbidities associated to lymphedema remains elusive, in particular, estrogen receptor antagonists or aromatase inhibitors. In addition, the role of sex hormones and gender has been poorly investigated in the etiology of the pathology. Therefore, this review aims to recapitulate the effect of sex hormones on the physiology of the lymphatic system and to investigate whetherhormone therapy could promote a lymphatic dysfunction leading to lymphedema.

11.
Int J Mol Sci ; 23(1)2021 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-35008641

RESUMO

Stau1 is a pluripotent RNA-binding protein that is responsible for the post-transcriptional regulation of a multitude of transcripts. Here, we observed that lung cancer patients with a high Stau1 expression have a longer recurrence free survival. Strikingly, Stau1 did not impair cell proliferation in vitro, but rather cell migration and cell adhesion. In vivo, Stau1 depletion favored tumor progression and metastases development. In addition, Stau1 depletion strongly impaired vessel maturation. Among a panel of candidate genes, we specifically identified the mRNA encoding the cell adhesion molecule Thrombospondin 1 (THBS1) as a new target for Staufen-mediated mRNA decay. Altogether, our results suggest that regulation of THBS1 expression by Stau1 may be a key process involved in lung cancer progression.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , Estabilidade de RNA/genética , RNA Mensageiro/genética , Trombospondina 1/genética , Animais , Adesão Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proteínas do Citoesqueleto , Progressão da Doença , Feminino , Regulação da Expressão Gênica/genética , Humanos , Camundongos , Camundongos Nus , Estudos Prospectivos , Proteínas de Ligação a RNA/genética
12.
Int J Mol Sci ; 21(22)2020 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-33202605

RESUMO

It was thought until the 1990s that the eukaryotic translation machinery was unable to translate a circular RNA. However internal ribosome entry sites (IRESs) and m6A-induced ribosome engagement sites (MIRESs) were discovered, promoting 5' end-independent translation initiation. Today a new family of so-called "noncoding" circular RNAs (circRNAs) has emerged, revealing the pivotal role of 5' end-independent translation. CircRNAs have a strong impact on translational control via their sponge function, and form a new mRNA family as they are translated into proteins with pathophysiological roles. While there is no more doubt about translation of covalently closed circRNA, the linearity of canonical mRNA is only theoretical: it has been shown for more than thirty years that polysomes exhibit a circular form and mRNA functional circularization has been demonstrated in the 1990s by the interaction of initiation factor eIF4G with poly(A) binding protein. More recently, additional mechanisms of 3'-5' interaction have been reported, including m6A modification. Functional circularization enhances translation via ribosome recycling and acceleration of the translation initiation rate. This update of covalently and noncovalently closed circular mRNA translation landscape shows that RNA with circular shape might be the rule for translation with an important impact on disease development and biotechnological applications.


Assuntos
Sítios Internos de Entrada Ribossomal , Biossíntese de Proteínas , RNA Circular/metabolismo , RNA Mensageiro/metabolismo , Ribossomos/metabolismo , Fator de Iniciação Eucariótico 4G/metabolismo , Humanos , Proteínas de Ligação a Poli(A)/metabolismo
13.
Int J Mol Sci ; 21(9)2020 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-32375307

RESUMO

The lower incidence of cardiovascular diseases in pre-menopausal women compared to men is well-known documented. This protection has been largely attributed to the protective effect of estrogens, which exert many beneficial effects against arterial diseases, including vasodilatation, acceleration of healing in response to arterial injury, arterial collateral growth and atheroprotection. More recently, with the visualization of the lymphatic vessels, the impact of estrogens on lymphedema and lymphatic diseases started to be elucidated. These estrogenic effects are mediated not only by the classic nuclear/genomic actions via the specific estrogen receptor (ER) α and ß, but also by rapid extra-nuclear membrane-initiated steroid signaling (MISS). The ERs are expressed by endothelial, lymphatic and smooth muscle cells in the different vessels. In this review, we will summarize the complex vascular effects of estrogens and selective estrogen receptor modulators (SERMs) that have been described using different transgenic mouse models with selective loss of ERα function and numerous animal models of vascular and lymphatic diseases.


Assuntos
Artérias/metabolismo , Vasos Linfáticos/metabolismo , Receptores de Estrogênio/metabolismo , Doenças Vasculares/etiologia , Doenças Vasculares/metabolismo , Animais , Artérias/patologia , Biomarcadores , Suscetibilidade a Doenças , Endotélio/metabolismo , Receptor alfa de Estrogênio/metabolismo , Estrogênios/metabolismo , Humanos , Vasos Linfáticos/patologia , Fatores Sexuais , Doenças Vasculares/patologia
14.
Lymphat Res Biol ; 18(6): 510-516, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32283042

RESUMO

Background: A few studies have examined the characteristics of severe breast cancer-related lymphedema (BCRL). This study aims at analyzing the factors associated with severe lymphedema (LE) across a specific population of patients with BCRL. Methods and Results: Seventy-four patients with BCRL were included and cared for in the Lymphology Unit of Toulouse University Hospital between 2015 and 2016. Characteristics of patients and factors related to severe BCRL were retrospectively assessed. The median age at time of LE was 56 years (30-82). Thirty-five patients (47.3%) had a mastectomy and 72 (97.3%) an axillary lymphadenectomy. Among patients treated with radiation therapy (n = 72), 76.3% received lymphatic nodes irradiation. Fifty-five patients (74.3%) received chemotherapy and 52 (70.3%) a hormonal suppression therapy. A high proportion of patients had severe (>400 mL, 64.9%) and premature LE, with a median time of 13 months since onset of surgery (0.1-400.2). Weight gain between surgery and LE management was more prevalent in obese patients (p = 0.0164). Body mass index (BMI) at BCRL diagnosis was the only risk factor associated with severe LE (p = 0.0132). There was no significant association between LE severity and treatments received for breast cancer. Conclusions: Our study did not show any influence of tumor characteristics and cancer-related treatments on the severity of BCRL. Only BMI at BCRL diagnosis appears as a factor related to severe LE. These results highlight the importance of an education care unit promoting personalized nutritional lifestyle and encouraging physical activity early in the management of breast cancer.


Assuntos
Índice de Massa Corporal , Linfedema Relacionado a Câncer de Mama/diagnóstico , Neoplasias da Mama , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias da Mama/complicações , Neoplasias da Mama/terapia , Feminino , Humanos , Excisão de Linfonodo , Mastectomia , Pessoa de Meia-Idade , Estudos Retrospectivos , Fatores de Risco
15.
Med Sci (Paris) ; 36(1): 38-43, 2020 Jan.
Artigo em Francês | MEDLINE | ID: mdl-32014096

RESUMO

RNA has not said its last word with the rise of a new RNA family, circular RNAs (circRNAs). Discovered 25 years ago, circRNAs were initially considered as splicing byproducts. Today it appears that 14% of human genes produce circRNAs, whereas more than 100 000 different circRNAs are expressed. They are produced from coding genes through an alternative splicing mechanism called backsplicing, where an acceptor site is linked with a donor site located downstream. Nuclear circRNAs regulate transcription and splicing of their linear isoform. Cytoplasmic circRNAs, which are predominant, either sequester miRNAs or RNA binding proteins, or are translated via internal initiation mechanisms. CircRNAs may constitute a powerful biotechnogical tool for protein synthesis, as their translation is stable over time. In addition, exogenous circRNAs generate less immune response than their linear counterparts. We will also discuss in this review their biotechnological potential and their roles in pathological processes.


TITLE: L'ARN circulaire nous joue-t-il des tours ? ABSTRACT: L'ARN n'a pas dit son dernier mot… avec l'émergence des ARN circulaires (circARN). Quatorze pour cent des gènes humains produisent en effet des circARN par un mécanisme d'épissage alternatif : le rétro-épissage. Chez l'homme, plus de 100 000 circARN différents ont ainsi été répertoriés. Dans le noyau, ils régulent la transcription ou l'épissage des ARNm, alors que, dans le cytoplasme, ils séquestrent des miARN et des protéines, ou sont traduits par un mécanisme d'initiation interne de la traduction. Ces circARN constituent en fait un outil biotechnologique performant car leur traduction est très stable dans le temps, et les circARN exogènes induisent moins de réponses immunitaires que les ARNm linéaires. Dans cette revue, nous discuterons, après les avoir décrits, du rôle des circARN dans différents processus pathologiques et de leur utilisation en biotechnologie.


Assuntos
Núcleo Celular/genética , Regulação da Expressão Gênica , RNA Circular/fisiologia , Processamento Alternativo/genética , Núcleo Celular/metabolismo , Doença/genética , Engenharia Genética/métodos , Engenharia Genética/tendências , Humanos , Biossíntese de Proteínas/genética , Splicing de RNA/fisiologia
16.
Mater Sci Eng C Mater Biol Appl ; 107: 110257, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31761205

RESUMO

Polymer blend made from poly(ε - caprolactone)/chitosan (PCL/CHT) offers interesting opportunities for biological applications. The paper presents a new way to fabricate PCL/CHT double-porosity (macrovoids with interconnected microporosity) membrane materials from a chemical optimization of the solvent and non-solvent phases and from a modified phase inversion technique. By varying the PCL/CHT proportion, it is shown that it is possible to improve the chemical and physical properties of the CHT carbohydrate polymer. The PCL/CHT membranes are fully characterized in term of physico-chemical properties (ATR-FTIR, XRD and DSC) to understand the miscibility of the two-polymer blend. Morphological characterization by SEM shows that by increasing CHT wt% in the blend, the size of the macrovoids was increasing. Rapid enzymatic degradation of PCL from all the blend was found by using lipase (from P. cepacia). The mechanisms at the origin of the morphological structuration of the material is also discussed. To test the ability to operate these materials as small diameter vascular scaffolds, cell culture with human umbilical vein endothelial cells (HUVECs) were carried out on the membrane and the results analyzed with laser scanning confocal microscopy (LSCM). Data suggest that the blend membrane with higher concentration of CHT polymer wt% have suitable properties that promote high number of cells on the surface by maintaining cellular cytoskeleton integrity within 3 days. The blend membrane with a double porous morphology could be potentially applicable in future for small diameter vascular graft application. The surface macrovoids (20-90 µm) could be useful for three-dimensional cellular adhesion and proliferation and interconnected microporous spongy network (7-20 µm) is expected to transfer essential nutrients, oxygen, growth factor between the macrovoids and the supernatant.


Assuntos
Quitosana/química , Poliésteres/química , Engenharia Tecidual , Alicerces Teciduais/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Adesão Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana , Humanos , Microscopia Confocal , Porosidade , Propriedades de Superfície , Viscosidade
17.
Elife ; 82019 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-31815666

RESUMO

Hypoxia, a major inducer of angiogenesis, triggers major changes in gene expression at the transcriptional level. Furthermore, under hypoxia, global protein synthesis is blocked while internal ribosome entry sites (IRES) allow specific mRNAs to be translated. Here, we report the transcriptome and translatome signatures of (lymph)angiogenic genes in hypoxic HL-1 mouse cardiomyocytes: most genes are induced at the translatome level, including all IRES-containing mRNAs. Our data reveal activation of (lymph)angiogenic factor mRNA IRESs in early hypoxia. We identify vasohibin1 (VASH1) as an IRES trans-acting factor (ITAF) that is able to bind RNA and to activate the FGF1 IRES in hypoxia, but which tends to inhibit several IRESs in normoxia. VASH1 depletion has a wide impact on the translatome of (lymph)angiogenesis genes, suggesting that this protein can regulate translation positively or negatively in early hypoxia. Translational control thus appears as a pivotal process triggering new vessel formation in ischemic heart.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Hipóxia/metabolismo , Sítios Internos de Entrada Ribossomal/fisiologia , Miócitos Cardíacos/metabolismo , Transativadores/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Linhagem Celular , Humanos , Camundongos , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , RNA Mensageiro/metabolismo , Motivos de Ligação ao RNA , Transcriptoma
18.
Cell Death Dis ; 10(12): 956, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31863036

RESUMO

Cytotoxic therapy for breast cancer inhibits the growth of primary tumors, but promotes metastasis to the sentinel lymph nodes through the lymphatic system. However, the effect of first-line chemotherapy on the lymphatic endothelium has been poorly investigated. In this study, we determined that paclitaxel, the anti-cancer drug approved for the treatment of metastatic or locally advanced breast cancer, induces lymphatic endothelial cell (LEC) autophagy to increase metastases. While paclitaxel treatment was largely efficacious in inhibiting LEC adhesion, it had no effect on cell survival. Paclitaxel inhibited LEC migration and branch point formation by inducing an autophagy mechanism independent of Akt phosphorylation. In vivo, paclitaxel mediated a higher permeability of lymphatic endothelium to tumor cells and this effect was reversed by chloroquine, an autophagy-lysosome inhibitor. Despite a strong effect on reducing tumor size, paclitaxel significantly increased metastasis to the sentinel lymph nodes. This effect was restricted to a lymphatic dissemination, as chemotherapy did not affect the blood endothelium. Taken together, our findings suggest that the lymphatic system resists to chemotherapy through an autophagy mechanism to promote malignant progression and metastatic lesions. This study paves the way for new combinative therapies aimed at reducing the number of metastases.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Paclitaxel/farmacologia , Linfonodo Sentinela/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Cloroquina/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Células Endoteliais/efeitos dos fármacos , Feminino , Humanos , Metástase Linfática , Lisossomos/efeitos dos fármacos , Paclitaxel/efeitos adversos , Proteínas Proto-Oncogênicas c-akt/genética , Linfonodo Sentinela/patologia
19.
Eur J Obstet Gynecol Reprod Biol ; 241: 35-41, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31419694

RESUMO

OBJECTIVES: Secondary lymphedema is a serious and debilitating condition, which may cause a range of cutaneous, infectious and joint complications with major psychological and social consequences. There is no curative treatment available. Initial symptomatic treatment includes Intensive Decongestive Treatment (IDT), which involves the use of multi-layered compression bandages, along with manual lymph drainage, physical exercise and skin care. IDT leads to an average decrease in limb volume of 20-40%, when compared to the contralateral limb. A better reduction may be obtained through the use of new adjuvant techniques, of which endermology is an example. The aim of this phase II study is to validate an IDT protocol combining endermology with standard of care in breast cancer related lymphedema. STUDY DESIGN: A standardised care protocol was proposed by the University Hospital of Toulouse's Lymphology team for the treatment of upper limb lymphedema after breast cancer surgery using Cellu M6 (LPG) Endermologie over 30 min. Every patient benefitted from IDT over 5 consecutive days, within the multidisciplinary Lymphology unit. Patients were randomised into three arms as follows: Arm 1: IDT for 5 days with bandages + manual lymphatic drainage. Arm 2: IDT with bandages + manual lymphatic drainage + Cellu M6 for 5 days. Arm 3: bandages + Cellu M6 for 5 days. During the study, patients will be followed-up for a period of 6 months. Use of LPG's Cellu M6 in combination with IDT may improve upper limb volume reduction compared with standard of care. By improving breast cancer related lymphedema, we expect to minimise further fluid build-up and to improve skin care, thus reducing the number of consultations and hospital admissions caused by this condition. The results of the present research protocol are expected to promote evidence supporting the use of endermology in the field of lymphology.


Assuntos
Linfedema/terapia , Massagem/métodos , Neoplasias da Mama/complicações , Feminino , Humanos , Linfedema/etiologia , Massagem/instrumentação
20.
Biochimie ; 164: 45-52, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31265859

RESUMO

Circular RNAs (circRNAs) are covalently closed RNA loops produced by a very large number of expressed eukaryotic genes. Initially considered as splicing background and/or splicing side products, recent studies have shown that they are evolutionary conserved and abundant in cells. Yet, their functions remain largely unknown. Because of their circular shape, they were initially categorized as non-coding RNAs. However, recent studies based on mass spectrometry analysis indicate that some cytoplasmic circRNAs are effectively translated into detectable peptides. This raises the interesting question of which mechanisms regulate the translation initiation of those circular transcripts, i.e. unable to recruit the small ribosome subunit through the 5' cap. A possible mechanism for alternative translation initiation is the presence of an IRES (Internal Ribosome Entry Site) that allows direct recruitment of initiation factors and ribosomes on the RNA independently from the cap. This is the case for several circRNAs that exhibit IRESs upstream from the start codon. Yet, another process seems to be involved in initiating the translation of circRNAs: the presence of N6-methyladenosine (m6A) residues. These m6A can promote cap-independent translation and have been shown to be enriched in circRNAs. Interestingly, these two alternative translation initiation processes are generally activated under cellular stress to allow expression of specific stress response genes. These discoveries therefore link circRNA translation to cellular response to stress conditions, raising new enquiries about the regulation of circRNA expression under stress conditions and their functions. This review provides a state of the art on this emerging area.


Assuntos
Adenosina/análogos & derivados , Sítios Internos de Entrada Ribossomal/genética , RNA Circular/genética , Adenosina/genética , Animais , Códon de Iniciação , Humanos , Iniciação Traducional da Cadeia Peptídica , Biossíntese de Proteínas , Splicing de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...