Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Genet ; 55(7): 1149-1163, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37386251

RESUMO

Hereditary congenital facial paresis type 1 (HCFP1) is an autosomal dominant disorder of absent or limited facial movement that maps to chromosome 3q21-q22 and is hypothesized to result from facial branchial motor neuron (FBMN) maldevelopment. In the present study, we report that HCFP1 results from heterozygous duplications within a neuron-specific GATA2 regulatory region that includes two enhancers and one silencer, and from noncoding single-nucleotide variants (SNVs) within the silencer. Some SNVs impair binding of NR2F1 to the silencer in vitro and in vivo and attenuate in vivo enhancer reporter expression in FBMNs. Gata2 and its effector Gata3 are essential for inner-ear efferent neuron (IEE) but not FBMN development. A humanized HCFP1 mouse model extends Gata2 expression, favors the formation of IEEs over FBMNs and is rescued by conditional loss of Gata3. These findings highlight the importance of temporal gene regulation in development and of noncoding variation in rare mendelian disease.


Assuntos
Paralisia Facial , Animais , Camundongos , Paralisia Facial/genética , Paralisia Facial/congênito , Paralisia Facial/metabolismo , Fator de Transcrição GATA2/genética , Fator de Transcrição GATA2/metabolismo , Neurônios Motores/metabolismo , Neurogênese , Neurônios Eferentes
2.
J Med Genet ; 59(3): 294-304, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-33495304

RESUMO

BACKGROUND: Singleton-Merten syndrome (SGMRT) is a rare immunogenetic disorder that variably features juvenile open-angle glaucoma (JOAG), psoriasiform skin rash, aortic calcifications and skeletal and dental dysplasia. Few families have been described and the genotypic and phenotypic spectrum is poorly defined, with variants in DDX58 (DExD/H-box helicase 58) being one of two identified causes, classified as SGMRT2. METHODS: Families underwent deep systemic phenotyping and exome sequencing. Functional characterisation with in vitro luciferase assays and in vivo interferon signature using bulk and single cell RNA sequencing was performed. RESULTS: We have identified a novel DDX58 variant c.1529A>T p.(Glu510Val) that segregates with disease in two families with SGMRT2. Patients in these families have widely variable phenotypic features and different ethnic background, with some being severely affected by systemic features and others solely with glaucoma. JOAG was present in all individuals affected with the syndrome. Furthermore, detailed evaluation of skin rash in one patient revealed sparse inflammatory infiltrates in a unique distribution. Functional analysis showed that the DDX58 variant is a dominant gain-of-function activator of interferon pathways in the absence of exogenous RNA ligands. Single cell RNA sequencing of patient lesional skin revealed a cellular activation of interferon-stimulated gene expression in keratinocytes and fibroblasts but not in neighbouring healthy skin. CONCLUSIONS: These results expand the genotypic spectrum of DDX58-associated disease, provide the first detailed description of ocular and dermatological phenotypes, expand our understanding of the molecular pathogenesis of this condition and provide a platform for testing response to therapy.


Assuntos
Exantema , Glaucoma de Ângulo Aberto , Odontodisplasia , Proteína DEAD-box 58/genética , Exantema/patologia , Glaucoma de Ângulo Aberto/patologia , Humanos , Interferons/genética , Metacarpo/patologia , Odontodisplasia/genética , Odontodisplasia/patologia , Receptores Imunológicos
3.
Sci Rep ; 10(1): 19986, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33203948

RESUMO

Nanophthalmos is a rare condition defined by a small, structurally normal eye with resultant high hyperopia. While six genes have been implicated in this hereditary condition (MFRP, PRSS56, MYRF, TMEM98, CRB1,VMD2/BEST1), the relative contribution of these to nanophthalmos or to less severe high hyperopia (≥ + 5.50 spherical equivalent) has not been fully elucidated. We collected probands and families (n = 56) with high hyperopia or nanophthalmos (≤ 21.0 mm axial length). Of 53 families that passed quality control, plausible genetic diagnoses were identified in 10/53 (18.8%) by high-throughput panel or pooled exome sequencing. These include 1 TMEM98 family (1.9%), 5 MFRP families (9.4%), and 4 PRSS56 families (7.5%), with 4 additional families having single allelic hits in MFRP or PRSS56 (7.5%). A novel deleterious TMEM98 variant (NM_015544.3, c.602G>C, p.(Arg201Pro)) segregated with disease in 4 affected members of a family. Multiple novel missense and frameshift variants in MFRP and PRSS56 were identified. PRSS56 families were more likely to have choroidal folds than other solved families, while MFRP families were more likely to have retinal degeneration. Together, this study defines the prevalence of nanophthalmos gene variants in high hyperopia and nanophthalmos and indicates that a large fraction of cases remain outside of single gene coding sequences.


Assuntos
Oftalmopatias Hereditárias/genética , Mutação da Fase de Leitura/genética , Hiperopia/genética , Proteínas de Membrana/genética , Microftalmia/genética , Mutação de Sentido Incorreto/genética , Serina Proteases/genética , Alelos , Estudos de Coortes , Olho/metabolismo , Feminino , Humanos , Masculino , Linhagem , Estados Unidos
4.
JAMA ; 322(17): 1682-1691, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31688885

RESUMO

Importance: Primary open-angle glaucoma presents with increased prevalence and a higher degree of clinical severity in populations of African ancestry compared with European or Asian ancestry. Despite this, individuals of African ancestry remain understudied in genomic research for blinding disorders. Objectives: To perform a genome-wide association study (GWAS) of African ancestry populations and evaluate potential mechanisms of pathogenesis for loci associated with primary open-angle glaucoma. Design, Settings, and Participants: A 2-stage GWAS with a discovery data set of 2320 individuals with primary open-angle glaucoma and 2121 control individuals without primary open-angle glaucoma. The validation stage included an additional 6937 affected individuals and 14 917 unaffected individuals using multicenter clinic- and population-based participant recruitment approaches. Study participants were recruited from Ghana, Nigeria, South Africa, the United States, Tanzania, Britain, Cameroon, Saudi Arabia, Brazil, the Democratic Republic of the Congo, Morocco, Peru, and Mali from 2003 to 2018. Individuals with primary open-angle glaucoma had open iridocorneal angles and displayed glaucomatous optic neuropathy with visual field defects. Elevated intraocular pressure was not included in the case definition. Control individuals had no elevated intraocular pressure and no signs of glaucoma. Exposures: Genetic variants associated with primary open-angle glaucoma. Main Outcomes and Measures: Presence of primary open-angle glaucoma. Genome-wide significance was defined as P < 5 × 10-8 in the discovery stage and in the meta-analysis of combined discovery and validation data. Results: A total of 2320 individuals with primary open-angle glaucoma (mean [interquartile range] age, 64.6 [56-74] years; 1055 [45.5%] women) and 2121 individuals without primary open-angle glaucoma (mean [interquartile range] age, 63.4 [55-71] years; 1025 [48.3%] women) were included in the discovery GWAS. The GWAS discovery meta-analysis demonstrated association of variants at amyloid-ß A4 precursor protein-binding family B member 2 (APBB2; chromosome 4, rs59892895T>C) with primary open-angle glaucoma (odds ratio [OR], 1.32 [95% CI, 1.20-1.46]; P = 2 × 10-8). The association was validated in an analysis of an additional 6937 affected individuals and 14 917 unaffected individuals (OR, 1.15 [95% CI, 1.09-1.21]; P < .001). Each copy of the rs59892895*C risk allele was associated with increased risk of primary open-angle glaucoma when all data were included in a meta-analysis (OR, 1.19 [95% CI, 1.14-1.25]; P = 4 × 10-13). The rs59892895*C risk allele was present at appreciable frequency only in African ancestry populations. In contrast, the rs59892895*C risk allele had a frequency of less than 0.1% in individuals of European or Asian ancestry. Conclusions and Relevance: In this genome-wide association study, variants at the APBB2 locus demonstrated differential association with primary open-angle glaucoma by ancestry. If validated in additional populations this finding may have implications for risk assessment and therapeutic strategies.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , População Negra/genética , Estudo de Associação Genômica Ampla , Glaucoma de Ângulo Aberto/etnologia , Glaucoma de Ângulo Aberto/genética , Polimorfismo de Nucleotídeo Único , Idoso , Peptídeos beta-Amiloides/genética , Estudos de Casos e Controles , Feminino , Predisposição Genética para Doença , Genótipo , Humanos , Imuno-Histoquímica , Masculino , Metanálise como Assunto , Pessoa de Meia-Idade , Fatores de Risco
5.
PLoS Genet ; 15(5): e1008130, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31048900

RESUMO

Nanophthalmos is a rare, potentially devastating eye condition characterized by small eyes with relatively normal anatomy, a high hyperopic refractive error, and frequent association with angle closure glaucoma and vision loss. The condition constitutes the extreme of hyperopia or farsightedness, a common refractive error that is associated with strabismus and amblyopia in children. NNO1 was the first mapped nanophthalmos locus. We used combined pooled exome sequencing and strong linkage data in the large family used to map this locus to identify a canonical splice site alteration upstream of the last exon of the gene encoding myelin regulatory factor (MYRF c.3376-1G>A), a membrane bound transcription factor that undergoes autoproteolytic cleavage for nuclear localization. This variant produced a stable RNA transcript, leading to a frameshift mutation p.Gly1126Valfs*31 in the C-terminus of the protein. In addition, we identified an early truncating MYRF frameshift mutation, c.769dupC (p.S264QfsX74), in a patient with extreme axial hyperopia and syndromic features. Myrf conditional knockout mice (CKO) developed depigmentation of the retinal pigment epithelium (RPE) and retinal degeneration supporting a role of this gene in retinal and RPE development. Furthermore, we demonstrated the reduced expression of Tmem98, another known nanophthalmos gene, in Myrf CKO mice, and the physical interaction of MYRF with TMEM98. Our study establishes MYRF as a nanophthalmos gene and uncovers a new pathway for eye growth and development.


Assuntos
Glaucoma de Ângulo Fechado/genética , Hiperopia/genética , Proteínas de Membrana/genética , Microftalmia/genética , Degeneração Retiniana/genética , Fatores de Transcrição/genética , Adulto , Animais , Criança , Pré-Escolar , Éxons , Família , Feminino , Mutação da Fase de Leitura/genética , Variação Genética/genética , Glaucoma de Ângulo Fechado/metabolismo , Humanos , Hiperopia/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microftalmia/metabolismo , Pessoa de Meia-Idade , Linhagem , Sítios de Splice de RNA/genética , Erros de Refração/genética , Fatores de Transcrição/metabolismo
6.
Exp Eye Res ; 155: 85-90, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28131617

RESUMO

Crystallin proteins are the most prominent protein of the lens and have been increasingly shown to play critical roles in other tissues, especially the retina. Members of all 3 sub-families of crystallins, alpha-, beta- and gamma-crystallins have been reported in the retina during diabetes, traumatic injury and other retinal diseases. While their specific role in the retina is still unclear and may vary, beta-crystallin proteins have been shown to play a critical role in ganglion cell survival following trauma. We recently reported the correlation between a gene conversion in the betaB2-crystallin gene and a phenotype of familial congenital cataract. Interestingly, in half of the patients, this phenotype was associated with glaucoma. Taken together, these data suggested that the mutations we recently reported could have an impact on the role of betaB2-crystallin in both lens epithelial cells and retinal neurons. Consistent with this hypothesis, we show in the current study that the gene conversion leading to an amino acid conversion lead to a loss of solubility and a change of subcellular localization of betaB2-crystallin in both cell types. While the overall observations were similar in both cell types, there were some important nuances between them, suggesting different roles and regulation of betaB2-crystallin in lens cells versus retinal neurons. The data reported in this study strongly support a significant role of betaB2-crystallin in both lenticular and retinal ocular tissues and warrant further analysis of its regulation and its impact not only in cataract formation but also in retinal neurodegenerative diseases.


Assuntos
Catarata/genética , DNA/genética , Glaucoma/genética , Cristalino/metabolismo , Mutação , Neurônios Retinianos/metabolismo , Cadeia B de beta-Cristalina/genética , Animais , Catarata/metabolismo , Catarata/patologia , Análise Mutacional de DNA , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Glaucoma/metabolismo , Glaucoma/patologia , Humanos , Fenótipo , Neurônios Retinianos/patologia , Cadeia B de beta-Cristalina/metabolismo
7.
J Clin Exp Ophthalmol ; 8(5)2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29805843

RESUMO

Crystallins are the predominant structural proteins in the lens that are evolutionarily related to stress proteins. There are two main crystallin gene families: α-crystallins and ß/γ-crystallins. α- and ß-crystallins were first considered to be lens-specific, but were recently recognized also as neuronal and retinal proteins. While in the ocular lens they are responsible for the maintenance of the transparency, their function in neurons is obviously different - regulating various protective mechanisms in degenerative conditions of the central nervous system. We recently reported the correlation between a gene conversion leading to a triple mutation in the betaB2-crystallin protein and a phenotype of familial congenital cataract with a high familial incidence also of primary open angle glaucoma. Congenital cataract is the leading cause of childhood blindness and progressive neuro degeneration of the optic nerve in glaucoma accounts as the leading cause of blindness worldwide. Altered solubility and stability of crystallin proteins cause cataract formation and are directly linked to a decrease in their protective function. Thus in this study, we evaluated the functional consequences of the mutations associated with this gene conversion on beta B2-crystallin protein biochemical properties in retinal neurons. We found that only the occurrence of the triple mutation leads to decreased solubility and formation of aggregates, which as we previously demonstrated, is associated with mislocalization to the mitochondria along with decreased mitochondrial function in retinal neurons and lens epithelial cells. Our data strongly support a significant role for beta B2-crystallin in both lenticular and retinal ocular tissues and warrant further analysis of its regulation and its impact not only in cataract formation but also in retinal neurodegenerative diseases.

8.
Mol Vis ; 20: 1579-93, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25489230

RESUMO

PURPOSE: To identify the cause of congenital cataracts in a consanguineous family of Ashkenazi Jewish ancestry. METHODS: We performed genome-wide linkage analysis and whole-exome sequencing for the initial discovery of variants, and we confirmed the variants using gene-specific primers and Sanger sequencing. RESULTS: We found significant evidence of linkage to chromosome 22, under an autosomal dominant inheritance model, with a maximum logarithm of the odds (LOD) score of 3.91 (16.918 to 25.641 Mb). Exome sequencing identified three nonsynonymous changes in the CRYBB2 exon 5 coding sequence that are consistent with the sequence of the corresponding region of the pseudogene CRYBB2P1. The identification of these changes was complicated by possible mismapping of some mutated CRYBB2 sequences to CRYBB2P1. Sequencing with gene-specific primers confirmed that the changes--rs2330991, c.433 C>T (p.R145W); rs2330992, c.440A>G (p.Q147R); and rs4049504, c.449C>T (p.T150M)--present in all ten affected family members are located in CRYBB2 and are not artifacts of cross-reaction with CRYBB2P1. We did not find these changes in six unaffected family members, including the unaffected grandfather who contributed the affected haplotype, nor did we find them in the 100 Ashkenazi Jewish controls. CONCLUSIONS: Our data are consistent with a de novo gene conversion event, transferring 270 base pairs at most from CRYBB2P1 to exon 5 of CRYBB2. This study highlights how linkage mapping can be complicated by de novo mutation events, as well as how sequence-analysis pipeline mapping of short reads from next-generation sequencing can be complicated by the existence of pseudogenes or other highly homologous sequences.


Assuntos
Catarata/genética , Conversão Gênica , Genes Dominantes , Cadeia B de beta-Cristalina/genética , Adulto , Idoso , Sequência de Bases , Estudos de Casos e Controles , Catarata/congênito , Catarata/etnologia , Catarata/patologia , Criança , Cromossomos Humanos Par 22 , Consanguinidade , Exoma , Éxons , Feminino , Ligação Genética , Humanos , Judeus , Cristalino/metabolismo , Cristalino/patologia , Masculino , Modelos Genéticos , Dados de Sequência Molecular , Linhagem , Análise de Sequência de DNA
9.
Hum Genet ; 133(1): 41-57, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24002674

RESUMO

Elevated intraocular pressure (IOP) is a major risk factor for glaucoma and is influenced by genetic and environmental factors. Recent genome-wide association studies (GWAS) reported associations with IOP at TMCO1 and GAS7, and with primary open-angle glaucoma (POAG) at CDKN2B-AS1, CAV1/CAV2, and SIX1/SIX6. To identify novel genetic variants and replicate the published findings, we performed GWAS and meta-analysis of IOP in >6,000 subjects of European ancestry collected in three datasets: the NEI Glaucoma Human genetics collaBORation, GLAUcoma Genes and ENvironment study, and a subset of the Age-related Macular Degeneration-Michigan, Mayo, AREDS and Pennsylvania study. While no signal achieved genome-wide significance in individual datasets, a meta-analysis identified significant associations with IOP at TMCO1 (rs7518099-G, p = 8.0 × 10(-8)). Focused analyses of five loci previously reported for IOP and/or POAG, i.e., TMCO1, CDKN2B-AS1, GAS7, CAV1/CAV2, and SIX1/SIX6, revealed associations with IOP that were largely consistent across our three datasets, and replicated the previously reported associations in both effect size and direction. These results confirm the involvement of common variants in multiple genomic regions in regulating IOP and/or glaucoma risk.


Assuntos
Estudo de Associação Genômica Ampla/métodos , Pressão Intraocular/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Alelos , Canais de Cálcio , Feminino , Loci Gênicos , Genoma Humano , Genótipo , Glaucoma de Ângulo Aberto/genética , Humanos , Modelos Lineares , Degeneração Macular/genética , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Fatores de Risco , População Branca/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...