Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochemistry ; 40(39): 11828-40, 2001 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-11570883

RESUMO

Clusterin is a heterodimeric glycoprotein found in many tissues of the body and is the most abundant protein secreted by cultured rat Sertoli cells. The function of clusterin is unknown, but it has been associated with cellular injury, lipid transport, apoptosis, and it may be involved in the clearance of cellular debris caused by cell injury or death. Consistent with this last idea, clusterin has been shown to bind to a variety of molecules with high affinity including lipids, peptides, and proteins and the hydrophobic probe 1-anilino-8-naphthalenesulfonate (ANS). Given this variety of ligands, clusterin must have specific structural features that provide the protein with its promiscuous binding activity. Using sequence analyses, we show that clusterin likely contains three long regions of natively disordered or molten globule-like structures containing putative amphipathic alpha-helices. These disordered regions were highly sensitive to trypsin digestion, indicating a flexible nature. The effects of denaturation on the fluorescence of the clusterin-ANS complex were compared between proteins with structured binding pockets and molten globular forms of proteins. Clusterin bound ANS in a manner that was very similar to that of molten globular proteins. Furthermore, we found that, when bound to ANS, at least one cleavage site within the protease-sensitive disordered regions of clusterin was protected from trypsin digestion. In addition, we show that clusterin can function as a biological detergent that can solubilize bacteriorhodopsin. We propose that natively disordered regions with amphipathic helices form a dynamic, molten globule-like binding site and provide clusterin the ability to bind to a variety of molecules.


Assuntos
Glicoproteínas/metabolismo , Chaperonas Moleculares/metabolismo , Sequência de Aminoácidos , Animais , Bacteriorodopsinas/metabolismo , Células Cultivadas , Dicroísmo Circular , Clusterina , Glicoproteínas/química , Humanos , Hidrólise , Masculino , Chaperonas Moleculares/química , Dados de Sequência Molecular , Ligação Proteica , Estrutura Secundária de Proteína , Ratos , Células de Sertoli
3.
Protein Sci ; 10(3): 560-71, 2001 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11344324

RESUMO

The DNA-repair protein XPA is required to recognize a wide variety of bulky lesions during nucleotide excision repair. Independent NMR solution structures of a human XPA fragment comprising approximately 40% of the full-length protein, the minimal DNA-binding domain, revealed that one-third of this molecule was disordered. To better characterize structural features of full-length XPA, we performed time-resolved trypsin proteolysis on active recombinant Xenopus XPA (xXPA). The resulting proteolytic fragments were analyzed by electrospray ionization interface coupled to a Fourier transform ion cyclotron resonance mass spectrometry and SDS-PAGE. The molecular weight of the full-length xXPA determined by mass spectrometry (30922.02 daltons) was consistent with that calculated from the sequence (30922.45 daltons). Moreover, the mass spectrometric data allowed the assignment of multiple xXPA fragments not resolvable by SDS-PAGE. The neural network program Predictor of Natural Disordered Regions (PONDR) applied to xXPA predicted extended disordered N- and C-terminal regions with an ordered internal core. This prediction agreed with our partial proteolysis results, thereby indicating that disorder in XPA shares sequence features with other well-characterized intrinsically unstructured proteins. Trypsin cleavages at 30 of the possible 48 sites were detected and no cleavage was observed in an internal region (Q85-I179) despite 14 possible cut sites. For the full-length xXPA, there was strong agreement among PONDR, partial proteolysis data, and the NMR structure for the corresponding XPA fragment.


Assuntos
Reparo do DNA/fisiologia , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/fisiologia , Motivos de Aminoácidos/genética , Motivos de Aminoácidos/fisiologia , Sequência de Aminoácidos , Animais , Eletroforese em Gel de Poliacrilamida , Hidrólise , Redes Neurais de Computação , Estrutura Secundária de Proteína , Espectrometria de Massas por Ionização por Electrospray , Espectroscopia de Infravermelho com Transformada de Fourier , Tripsina , Xenopus laevis , Proteína de Xeroderma Pigmentoso Grupo A
4.
J Mol Graph Model ; 19(1): 26-59, 2001.
Artigo em Inglês | MEDLINE | ID: mdl-11381529

RESUMO

Proteins can exist in a trinity of structures: the ordered state, the molten globule, and the random coil. The five following examples suggest that native protein structure can correspond to any of the three states (not just the ordered state) and that protein function can arise from any of the three states and their transitions. (1) In a process that likely mimics infection, fd phage converts from the ordered into the disordered molten globular state. (2) Nucleosome hyperacetylation is crucial to DNA replication and transcription; this chemical modification greatly increases the net negative charge of the nucleosome core particle. We propose that the increased charge imbalance promotes its conversion to a much less rigid form. (3) Clusterin contains an ordered domain and also a native molten globular region. The molten globular domain likely functions as a proteinaceous detergent for cell remodeling and removal of apoptotic debris. (4) In a critical signaling event, a helix in calcineurin becomes bound and surrounded by calmodulin, thereby turning on calcineurin's serine/threonine phosphatase activity. Locating the calcineurin helix within a region of disorder is essential for enabling calmodulin to surround its target upon binding. (5) Calsequestrin regulates calcium levels in the sarcoplasmic reticulum by binding approximately 50 ions/molecule. Disordered polyanion tails at the carboxy terminus bind many of these calcium ions, perhaps without adopting a unique structure. In addition to these examples, we will discuss 16 more proteins with native disorder. These disordered regions include molecular recognition domains, protein folding inhibitors, flexible linkers, entropic springs, entropic clocks, and entropic bristles. Motivated by such examples of intrinsic disorder, we are studying the relationships between amino acid sequence and order/disorder, and from this information we are predicting intrinsic order/disorder from amino acid sequence. The sequence-structure relationships indicate that disorder is an encoded property, and the predictions strongly suggest that proteins in nature are much richer in intrinsic disorder than are those in the Protein Data Bank. Recent predictions on 29 genomes indicate that proteins from eucaryotes apparently have more intrinsic disorder than those from either bacteria or archaea, with typically > 30% of eucaryotic proteins having disordered regions of length > or = 50 consecutive residues.


Assuntos
Conformação Proteica , Proteínas/química , Proteínas/fisiologia , Modelos Moleculares , Dobramento de Proteína , Estrutura Terciária de Proteína , Proteínas/genética , Relação Estrutura-Atividade
5.
Pac Symp Biocomput ; : 89-100, 2001.
Artigo em Inglês | MEDLINE | ID: mdl-11262981

RESUMO

To investigate the determinants of protein order and disorder, three primary and one derivative database of intrinsically disordered proteins were compiled. The segments in each primary database were characterized by one of the following: X-ray crystallography, nuclear magnetic resonance (NMR), or circular dichroism (CD). The derivative database was based on homology. The three primary disordered databases have a combined total of 157 proteins or segments of length.30 with 18,010 residues, while the derivative database contains 572 proteins from 32 families with 52,688 putatively disordered residues. For the four disordered databases, the amino acid compositions were compared with those from a database of ordered structure. Relative to the ordered protein, the intrinsically disordered segments in all four databases were significantly depleted in W, C, F, I, Y, V, L and N, significantly enriched in A, R, G, Q, S, P, E and K, and inconsistently different in H, M, T, and D, suggesting that the first set be called order-promoting and the second set disorder-promoting. Also, 265 amino acid properties were ranked by their ability to discriminate order and disorder and then pruned to remove the most highly correlated pairs. The 10 highest-ranking properties after pruning consisted of 2 residue contact scales, 4 hydrophobicity scales, 3 scales associated with.-sheets and one polarity scale. Using these 10 properties for comparisons of the 3 primary databases suggests that disorder in all 3 databases is very similar, but with those characterized by NMR and CD being the most similar, those by CD and X-ray being next, and those by NMR and X-ray being the least similar.


Assuntos
Aminoácidos/química , Proteínas/química , Aminoácidos/análise , Dicroísmo Circular , Cristalografia por Raios X , Interpretação Estatística de Dados , Bases de Dados Factuais , Dobramento de Proteína
6.
Proteins ; 42(1): 38-48, 2001 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-11093259

RESUMO

Intrinsic disorder refers to segments or to whole proteins that fail to self-fold into fixed 3D structure, with such disorder sometimes existing in the native state. Here we report data on the relationships among intrinsic disorder, sequence complexity as measured by Shannon's entropy, and amino acid composition. Intrinsic disorder identified in protein crystal structures, and by nuclear magnetic resonance, circular dichroism, and prediction from amino acid sequence, all exhibit similar complexity distributions that are shifted to lower values compared to, but significantly overlapping with, the distribution for ordered proteins. Compared to sequences from ordered proteins, these variously characterized intrinsically disordered segments and proteins, and also a collection of low-complexity sequences, typically have obviously higher levels of protein-specific subsets of the following amino acids: R, K, E, P, and S, and lower levels of subsets of the following: C, W, Y, I, and V. The Swiss Protein database of sequences exhibits significantly higher amounts of both low-complexity and predicted-to-be-disordered segments as compared to a non-redundant set of sequences from the Protein Data Bank, providing additional data that nature is richer in disordered and low-complexity segments compared to the commonness of these features in the set of structurally characterized proteins.


Assuntos
Proteínas/química , Inteligência Artificial , Sequência de Bases , Bases de Dados Factuais , Modelos Moleculares , Desnaturação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína , Termodinâmica
7.
Plant Physiol ; 123(2): 699-710, 2000 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-10859200

RESUMO

Petunia (Petunia hybrida) pollen requires flavonols (Fl) to germinate. Adding kaempferol to Fl-deficient pollen causes rapid and synchronous germination and tube outgrowth. We exploited this system to identify genes responsive to Fls and to examine the changes in gene expression that occur during the first 0.5 h of pollen germination. We used a subtracted library and differential screening to identify 22 petunia germinating pollen clones. All but two were expressed exclusively in pollen and half of the clones were rare or low abundance cDNAs. RNA gel-blot analysis showed that the steady-state transcript levels of all the clones were increased in response to kaempferol. The sequences showing the greatest response to kaempferol encode proteins that have regulatory or signaling functions and include S/D4, a leucine-rich repeat protein, S/D1, a LIM-domain protein, and D14, a putative Zn finger protein with a heme-binding site. Eight of the clones were novel including S/D10, a cDNA only expressed very late in pollen development and highly up-regulated during the first 0.5 h of germination. The translation product of the S/D3 cDNA shares some features with a neuropeptide that regulates guidance and growth in the tips of extending axons. This study confirmed that the bulk of pollen mRNA accumulates well before germination, but that specific sequences are transcribed during the earliest moments of Fl-induced pollen germination.


Assuntos
Flavonoides , Germinação/efeitos dos fármacos , Quempferóis , Proteínas de Plantas/genética , Pólen/fisiologia , Quercetina/análogos & derivados , Solanaceae/genética , Sequência de Aminoácidos , Clonagem Molecular , DNA Complementar , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dados de Sequência Molecular , Ligação Proteica , Quercetina/farmacologia , RNA Mensageiro/genética , Sequências Repetitivas de Aminoácidos , Solanaceae/fisiologia
8.
Artigo em Inglês | MEDLINE | ID: mdl-11700597

RESUMO

Intrinsic protein disorder refers to segments or to whole proteins that fail to fold completely on their own. Here we predicted disorder on protein sequences from 34 genomes, including 22 bacteria, 7 archaea, and 5 eucaryotes. Predicted disordered segments > or = 50, > or = 40, and > or = 30 in length were determined as well as proteins estimated to be wholly disordered. The five eucaryotes were separated from bacteria and archaea by having the highest percentages of sequences predicted to have disordered segments > or = 50 in length: from 25% for Plasmodium to 41% for Drosophila. Estimates of wholly disordered proteins in the bacteria ranged from 1% to 8%, averaging to 3 +/- 2%, estimates in various archaea ranged from 2 to 11%, plus an apparently anomalous 18%, averaging to 7 +/- 5% that drops to 5 +/- 3% if the high value is discarded. Estimates in the 5 eucarya ranged from 3 to 17%. The putative wholly disordered proteins were often ribosomal proteins, but in addition about equal numbers were of known and unknown function. Overall, intrinsic disorder appears to be a common, with eucaryotes perhaps having a higher percentage of native disorder than archaea or bacteria.


Assuntos
Proteínas/química , Proteínas/genética , Animais , Biologia Computacional , Bases de Dados de Proteínas , Genoma , Dobramento de Proteína , Proteoma
9.
Artigo em Inglês | MEDLINE | ID: mdl-11700598

RESUMO

More than 6,000 amino acid sequence attributes were ranked by their conditional probabilities for indicating ordered or disordered protein structure. The top 10 each from several different groups of attributes were merged with still other attributes and then subjected to selection by logistic regression. Evidently, the determination of order or disorder results from the interplay among several attributes, such as average Coordination Number, aromatic content and the numbers of non-polar amino acids, all of which favor the ordered state, and others like Net Charge, Flexibility Index, and the presence of certain polar amino acids, all of which favor disorder. The top 12 selected attributes were used as inputs for artificial neural network (ANN) predictors. Five predictors were developed, compared with each other, and with previous work. The best of these shows substantially improved generalization compared to our previously published predictor.


Assuntos
Proteínas/química , Proteínas/genética , Biologia Computacional , Modelos Logísticos , Redes Neurais de Computação , Probabilidade , Dobramento de Proteína , Curva ROC
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...