Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Pharm ; 618: 121636, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35259439

RESUMO

The study demonstrated the fabrication of new poly(glycerol adipate) (PGA) nanoparticles decorated with folic acid (FOL-PGA) and triphenylphosphonium (TPP-PGA) and the potential on the delivery of acetogenin-enriched Annona muricata Linn leaf extract to ovarian cancer cells. FOL-PGA and TPP-PGA were successfully synthesized and used to fabricate FOL-decorated nanoparticles (FOL-NPs) and FOL-/TPP- decorated nanoparticles (FOL/TPP-NPs) by blending two polymers at a mass ratio of 1:1. All nanoparticles had small size of around 100 nm, narrow size distribution and high negative surface charge about -30 mV. The stable FOL/TPP-NPs showed highest drug loading of 14.9 ± 1.9% at 1:5 ratio of extract to polymer and reached to 35.8 ± 2.1% at higher ratio. Both nanoparticles released the extract in a biphasic sustained release manner over 5 days. The toxicity of the extract to SKOV3 cells was potentiated by FOL-NPs and FOL/TPP-NPs by 2.0 - 2.6 fold through induction of cell apoptosis. FOL/TPP-NPs showed lower IC50 and higher cellular uptake as compared to FOL-NPs. FOL-NPs exhibited folate receptor-mediated endocytosis. FOL/TPP-NPs provided more advantages than FOL-NPs in terms of stability in physiological fluid, uptake efficiency and targeting ability to mitochondria and showed a promising potential PGA platform for targeted delivery of herbal cytotoxic extracts.


Assuntos
Annona , Nanopartículas , Neoplasias Ovarianas , Humanos , Adipatos , Portadores de Fármacos , Ácido Fólico , Glicerol , Neoplasias Ovarianas/tratamento farmacológico , Extratos Vegetais , Polietilenoglicóis , Polímeros
2.
Mol Pharm ; 17(6): 2083-2098, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32348676

RESUMO

Key challenges hindering the clinical translation of the use of nanoparticles (NP) for delivery of drugs to tumors are inadequate drug loading and premature drug release. This study focused on understanding the conditions required to produce nanoparticles that can reach their target site with sufficient drug loading and drug retention for effective pharmacological action. Etoposide, etoposide phosphate, and teniposide were screened against modified poly(glycerol) adipate (PGA) based polymers by monitoring drug release from 40% drug in polymer films and using Fourier transform infrared spectroscopy (FTIR) and contact angle measurements to help understand the release results. Polymers were matched with the specific drugs based on the interactions observed. NP were then prepared by an interfacial deposition method. NPs were characterized and resulted in drug loadings ranging from 3.5% and 5%, respectively, for etoposide phosphate and etoposide with PGA modified with stearate (PGA85%C18) up to 13.4% for teniposide with PGA modified with tryptophan (PGA50%Try) and drug release of just 22-35% over 24 h. Assessment of cytotoxicity showed that etoposide nanoparticles with PGA85%C18 were more potent than an equivalent amount of free drug. This screening method to match polymers to drugs to monitor based drug and polymer interactions thus resulted in the formulation of nanoparticles with higher drug loading and slower release and potential for further development for clinical applications.


Assuntos
Portadores de Fármacos/química , Polímeros/química , Liberação Controlada de Fármacos , Nanopartículas/química , Poliésteres/química
3.
J Pharm Sci ; 109(3): 1347-1355, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31816297

RESUMO

Amorphous solid dispersions are a promising strategy to overcome poor solubility and stability limitations, reducing the crystallinity of the drug through incorporation within a polymer matrix. However, to achieve an effective amorphous solid dispersion, the polymer and drug must be compatible, otherwise the drug can undergo recrystallization. In this work, we investigated the potential of the enzymatically synthesized poly(glycerol-adipate), as a pharmaceutical tool for producing a nanoamorphous formulation. A polymeric prodrug of poly(glycerol-adipate) was synthesized by coupling mefenamic acid as drug. The amorphicity of the polymeric prodrug was assessed combining differential scanning calorimetry and polarized optical microscopy. The prodrug was then formulated into nanoparticles and studied for stability and drug release in the presence of lipase. To realize the goal of combination drug therapies for overcoming drug resistance and improving treatment outcomes, the prodrug was screened as a solubility enhancer for a series of fenamic drugs and compared with commercially available polymers commonly used in solid dispersions. Screening was carried out by developing a high-throughput miniaturized screening assay using a 2D printer to dispense the polymer and drug combinations. Finally, the collected data showed that drug conjugation could improve drug-polymer compatibility, in addition to facilitating the release of drugs by 2 different mechanisms.


Assuntos
Glicerol , Pró-Fármacos , Adipatos , Química Farmacêutica , Portadores de Fármacos , Estabilidade de Medicamentos , Polímeros , Solubilidade
4.
Eur J Pharm Biopharm ; 146: 1-9, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31726218

RESUMO

Recently there has been an increased interest to develop specialised dosage forms that are better suited to specific patient populations, such as paediatrics and geriatrics. In these patient populations the acceptability of the oral dosage form can be paramount to the products success. However, many Active Pharmaceutical Ingredients (APIs) are known to cause an aversive taste response. One way to increase the acceptability and to enhance the palatability of the formulation is to design coated taste-masked particulate-based dosage forms. The masking of poorly tasting drugs with physical barriers such as polymer coatings can be utilised to prevent the release of drug within the oral cavity, thus preventing a taste response. However, currently, there are few assessment tools and models available to test the efficiency of these particulate-based taste-masked formulations. The rat brief access taste aversion model has been shown to be useful in assessment of taste for liquid dosage forms. However, the applicability of the rat model for particulate-based taste masked formulations is yet to be assessed. It is not understood whether dissolution, solubility and thus exposure of the drug to taste receptors would be the same in rat and human. Therefore, rat saliva must be compared to human saliva to determine the likelihood that drug release would be similar within the oral cavity for both species. In this study rat saliva was characterised for parameters known to be important for drug dissolution, such as pH, buffer capacity, surface tension, and viscosity. Subsequently dissolution of model bitter tasting compounds, sildenafil citrate and efavirenz, in rat saliva was compared to dissolution in human saliva. For all parameters characterised and for the dissolution of both drugs in rat saliva, a substantial difference was observed when compared to human saliva. This discrepancy in saliva parameters and dissolution of model drugs suggests that preclinical taste evaluation of particulate-based taste-masked formulations suggests rat is not a good model for predicting taste of solid dosage forms or undissolved drug where dissolution is required. Alternative preclinical in vivo models in other species, or improved biorelevant in vitro models should be considered instead.


Assuntos
Composição de Medicamentos/métodos , Avaliação Pré-Clínica de Medicamentos/normas , Excipientes/química , Ratos/fisiologia , Paladar/efeitos dos fármacos , Administração Oral , Animais , Agentes Aversivos/administração & dosagem , Química Farmacêutica , Criança , Liberação Controlada de Fármacos , Aromatizantes/administração & dosagem , Humanos , Modelos Animais , Mucosa Bucal/metabolismo , Mucosa Bucal/fisiologia , Saliva/química , Saliva/fisiologia , Especificidade da Espécie , Paladar/fisiologia
5.
Polymers (Basel) ; 11(10)2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31557875

RESUMO

The enzymatically synthesized poly (glycerol adipate) (PGA) has demonstrated all the desirable key properties required from a performing biomaterial to be considered a versatile "polymeric-tool" in the broad field of drug delivery. The step-growth polymerization pathway catalyzed by lipase generates a highly functionalizable platform while avoiding tedious steps of protection and deprotection. Synthesis requires only minor purification steps and uses cheap and readily available reagents. The final polymeric material is biodegradable, biocompatible and intrinsically amphiphilic, with a good propensity to self-assemble into nanoparticles (NPs). The free hydroxyl group lends itself to a variety of chemical derivatizations via simple reaction pathways which alter its physico-chemical properties with a possibility to generate an endless number of possible active macromolecules. The present work aims to summarize the available literature about PGA synthesis, architecture alterations, chemical modifications and its application in drug and gene delivery as a versatile carrier. Following on from this, the evolution of the concept of enzymatically-degradable PGA-drug conjugation has been explored, reporting recent examples in the literature.

6.
Eur J Pharm Biopharm ; 142: 377-386, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31319123

RESUMO

Poly(glycerol adipate) (PGA) is a biodegradable, biocompatible, polymer with a great deal of potential in the field of drug delivery. Active drug molecules can be conjugated to the polymer backbone or encapsulated in self-assembled nanoparticles for targeted and systemic delivery. Here, a range of techniques have been used to characterise the enzymatic degradation of PGA extensively for the first time and to provide an indication of the way the polymer will behave and release drug payloads in vivo. Dynamic Light Scattering was used to monitor change in nanoparticle size, indicative of degradation. The release of a fluorescent dye, coupled to PGA, upon incubation with enzymes was measured over a 96 h period as a model of drug release from polymer drug conjugates. The changes to the chemical structure and molecular weight of PGA following enzyme exposure were characterised using FTIR, NMR and GPC. These techniques provided evidence of the biodegradability of PGA, its susceptibility to degradation by a range of enzymes commonly found in the human body and the polymer's potential as a drug delivery platform.


Assuntos
Adipatos/química , Plásticos Biodegradáveis/química , Glicerol/química , Polímeros/química , Portadores de Fármacos/química , Composição de Medicamentos/métodos , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos/efeitos dos fármacos , Humanos , Nanopartículas/química
7.
Bioconjug Chem ; 30(5): 1371-1384, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30946570

RESUMO

Animal models are effective for assessing tumor localization of nanosystems but difficult to use for studying penetration beyond the vasculature. Here, we have used well-characterized HCT116 colorectal cancer spheroids to study the effect of nanoparticle (NP) physicochemical properties on penetration and uptake. Incubation of spheroids with Hoechst 33342 resulted in a dye gradient, which facilitated discrimination between the populations of cells in the core and at the periphery of spheroids by flow cytometry. This approach was used to compare doxorubicin and liposomal doxorubicin (Caelyx) and a range of model poly(styrene) nanoparticles of different sizes (30 nm, 50 nm, 100 nm) and with different surface chemistries (50 nm uniform plain, carboxylated, aminated and a range of NPs and polyethylene glycol modified NPs prepared from a promising new functionalized biodegradable polymer (poly(glycerol-adipate), PGA). Unmodified poly(styrene) nanoparticles (30 nm/50 nm) were able to penetrate to the core of HCT116 spheroids more efficiently than larger poly(styrene) nanoparticles (100 nm). Surprisingly, penetration of 30 and 50 nm particles was as good as clinically relevant doxorubicin concentrations. However, penetration was reduced with higher surface charge. PGA NPs of 100 nm showed similar penetration into spheroids as 50 nm poly(styrene) nanoparticles, which may be related to polymer flexibility. PEG surface modification of polymeric particles significantly improved penetration into the spheroid core. The new model combining the use of spheroids Hoechst staining and flow cytometry was a useful model for assessing NP penetration and gives useful insights into the effects of NPs' physical properties when designing nanomedicines.


Assuntos
Neoplasias Colorretais/metabolismo , Nanopartículas , Esferoides Celulares/metabolismo , Animais , Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/farmacocinética , Benzimidazóis/metabolismo , Doxorrubicina/administração & dosagem , Doxorrubicina/análogos & derivados , Doxorrubicina/farmacocinética , Corantes Fluorescentes/metabolismo , Células HCT116 , Humanos , Tamanho da Partícula , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/farmacocinética , Propriedades de Superfície
8.
Int J Pharm ; 555: 228-236, 2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30465852

RESUMO

The oral cavity is of great importance to the performance of orally retained formulations, including: orally disintegrating tablets, taste-masked formulations, and buccal/sublingual delivery systems. With regards to in vitro dissolution assessment of these dosage forms, human saliva should be represented by the dissolution media. Currently there is no general consensus regarding oral cavity dissolution. In this study pooled human saliva was characterised and utilised as dissolution media for biorelevant oral cavity dissolution studies and to assess drug release. Lipophilic drug felodipine with challenging biopharmaceutical properties was selected for assessment in oral cavity dissolution studies. These saliva dissolution studies investigated for the first time how biorelevant dissolution can be implemented as a screening tool to guide the formulation development process and to predict dosage form performance within the mouth. In this study a combination of three dissolution enhancement strategies (cryomilling, solid dispersion, and inclusion complexation) were employed to eventually increase the concentration of felodipine in saliva 150-fold. Using this successful formulation strategy orally disintegrating tablets of felodipine were produced. Interestingly, the percentage release of felodipine in compendial dissolution apparatus was shown to be over 80% after 10 min. On the other hand, saliva-based dissolution showed that percentage release of felodipine was only 0.2% after 10 min using the same formulation. This discrepancy in drug release between dissolution media highlights the need for biorelevant dissolution apparatus for the oral cavity to reliably assess performance of relevant dosage forms in vitro.


Assuntos
Bloqueadores dos Canais de Cálcio/administração & dosagem , Sistemas de Liberação de Medicamentos , Felodipino/administração & dosagem , Saliva/metabolismo , Administração Oral , Bloqueadores dos Canais de Cálcio/química , Bloqueadores dos Canais de Cálcio/metabolismo , Química Farmacêutica/métodos , Liberação Controlada de Fármacos , Felodipino/química , Felodipino/metabolismo , Humanos , Solubilidade , Comprimidos
9.
Mol Pharm ; 15(10): 4654-4667, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30142269

RESUMO

The problem of predicting small molecule-polymer compatibility is relevant to many areas of chemistry and pharmaceutical science but particularly drug delivery. Computational methods based on Hildebrand and Hansen solubility parameters, and the estimation of the Flory-Huggins parameter, χ, have proliferated across the literature. Focusing on the need to develop amorphous solid dispersions to improve the bioavailability of poorly soluble drug candidates, an innovative, high-throughput 2D printing method has been employed to rapidly assess the compatibility of 54 drug-polymer pairings (nine drug compounds in six polymers). In this study, the first systematic assessment of the in silico methods for this application, neither the solubility parameter approach nor the calculated χ, correctly predicted drug-polymer compatibility. The theoretical limitations of the solubility parameter approach are discussed and used to explain why this approach is fundamentally unsuitable for predicting polymer-drug interactions. Examination of the original sources describing the method for calculating χ shows that only the enthalpic contributions to the term have been included, and the corrective entropic term is absent. The development and application of new in silico techniques, that consider all parts of the free energy of mixing, are needed in order to usefully predict small molecule-polymer compatibility and to realize the ambition of a drug-polymer screening method.


Assuntos
Polímeros/química , Estabilidade de Medicamentos , Simulação de Dinâmica Molecular , Preparações Farmacêuticas/química , Solubilidade , Termodinâmica
10.
Int J Pharm ; 547(1-2): 572-581, 2018 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-29908332

RESUMO

Virus infections cause diseases of different severity ranged from mild infection e.g. common cold into life threatening diseases e.g. Human Immunodeficiency virus (HIV), Hepatitis B. Virus infections represent 44% of newly emerging infections. Although there are many efficient antiviral agents, they still have drawbacks due to accumulation at off target organs and developing of virus resistance due to virus mutation. Therefore, developing a delivery system that can selectively target drug into affected organs and avoid off target accumulation would be a highly advantageous strategy to improve antiviral therapy. Nanoparticles (NP) can be effectively targeted to the liver, and therefore it could be used for improving therapy of hepatic virus infections including hepatitis B virus and hepatitis C virus (HCV). Many studies were performed to encapsulate antiviral agents into nano-delivery system to improve their pharmacokinetics parameters to have a better therapeutic efficacy with lower side effects. However, the effect of virus infection on the uptake of NP has not yet been studied in detail. The latter is a crucial area as modulation of endocytic uptake of nanoparticles could impact on reduce potential therapeutic usefulness of antiviral agents loaded into nano-delivery system. In this study, a fluorescently-labelled polymeric nanoparticle was prepared and used to track NP uptake into Huh7.5, human hepatoma cells transfected with replicating HCV genomes, compared with non-transfected cells as a model representing hepatocyte uptake. Confocal microscopy and flow cytometry of virus transfected Huh7.5 cells unexpectedly demonstrated two-fold increase in uptake of NP compared to non-transfected cells. Therefore, virus transfection enhanced NP uptake into Huh7.5 cells and NP could be considered as a promising delivery system for targeted treatment of hepatitis viruses.


Assuntos
Antivirais/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Hepacivirus/efeitos dos fármacos , Hepatócitos/metabolismo , Nanopartículas/química , Linhagem Celular Tumoral , Infecções por HIV/tratamento farmacológico , Hepacivirus/genética , Hepatite C/tratamento farmacológico , Hepatócitos/efeitos dos fármacos , Humanos , Fígado/citologia , Fígado/efeitos dos fármacos , Permeabilidade , Polímeros/química , Transfecção
11.
Colloids Surf B Biointerfaces ; 167: 115-125, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29631222

RESUMO

Polymer-drug conjugates have been actively developed as potential anticancer drug delivery systems. In this study, we report the first polymer-anticancer drug conjugate with poly(glycerol adipate) (PGA) through the successful conjugation of methotrexate (MTX). MTX-PGA conjugates were controllably and simply fabricated by carbodiimide-mediated coupling reaction with various high molar ratios of MTX. The MTX-PGA conjugate self-assembled into nanoparticles with size dependent on the amount of conjugated MTX and the pH of medium. Change in particle size was attributed to steric hindrance and bulkiness inside the nanoparticle core and dissociation of free functional groups of the drug. The MTX-PGA nanoparticles were physically stable in media with pH range of 5-9 and ionic strength of up to 0.15 M NaCl and further chemically stable against hydrolysis in pH 7.4 medium over 30 days but enzymatically degradable to release unchanged free drug. Although 30%MTX-PGA nanoparticles exhibited only slightly less potency than free MTX in 791T cells in contrast to previously reported human serum albumin-MTX conjugates which had >300 times lower potency than free MTX. However, the MTX nanoparticles showed 7 times higher toxicity to Saos-2 cells than MTX. Together with the enzymic degradation experiments, these results suggest that with a suitable biodegradable polymer a linker moiety is not a necessary component. These easily synthesised PGA drug conjugates lacking a linker moiety could therefore be an effective new pathway for development of polymer drug conjugates.


Assuntos
Antineoplásicos/química , Metotrexato/química , Nanopartículas/química , Poliésteres/química , Antimetabólitos Antineoplásicos/química , Antimetabólitos Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Química Farmacêutica , Composição de Medicamentos , Humanos , Espectroscopia de Ressonância Magnética , Metotrexato/farmacologia , Poliésteres/farmacologia
12.
ACS Med Chem Lett ; 9(3): 193-197, 2018 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-29541359

RESUMO

A miniaturized assay was optimized to evaluate the enhanced apparent water solubility of pyrazolo[3,4-d]pyrimidine derivatives used extensively as anticancer drug scaffolds. The applied amount of drugs used in the reported strategy ranged from 5 to 10 µg per formulation which were dispensed by an inkjet 2D printer directly into a 96-well plate. The selected polymer/drug formulations with high water solubility demonstrated improved cytotoxicity against a human lung adenocarcinoma cancer cell line (A549) compared to the free drugs. We attribute the enhanced efficacy to the improved apparent-solubility of the drug molecules achieved via this methodology. This novel miniaturized method showed promising results in terms of water solubility improvement of the highly hydrophobic pyrazolo[3,4-d]pyrimidine derivatives, requiring only a few micrograms of each drug per tested polymeric formulation. In addition, the reported experimental evidence may facilitate identification of suitable polymers for combination with drug, leading to investigations on biological properties or mechanisms of action in a single formulation.

13.
Pharm Res ; 35(4): 86, 2018 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-29516282

RESUMO

PURPOSE: This study aimed to further explore the mechanisms behind the ability of certain linear polyamidoamines (PAAs) to transfect cells with minimal cytotoxicity. METHODS: The transfection efficiency of DNA complexed with a PAA of a molecular weight over 10 kDa or 25 kDa branched polyethyleneimine (BPEI) was compared in A549 cells using a luciferase reporter gene assay. The impact of endo/lysosomal escape on transgene expression was investigated by transfecting cells in presence of bafilomycin A1 or chloroquine. Cytotoxicity caused by the vectors was evaluated by measuring cell metabolic activity, lactate dehydrogenase release, formation of reactive oxygen species and changes in mitochondrial membrane potential. RESULTS: The luciferase activity was ~3-fold lower after transfection with PAA polyplexes than with BPEI complexes at the optimal polymer to nucleotide ratio (RU:Nt). However, in contrast to BPEI vectors, PAA polyplexes caused negligible cytotoxic effects. The transfection efficiency of PAA polyplexes was significantly reduced in presence of bafilomycin A1 while chloroquine enhanced or decreased transgene expression depending on the RU:Nt. CONCLUSIONS: PAA polyplexes displayed a pH-dependent endo/lysosomal escape which was not associated with cytotoxic events, unlike observed with BPEI polyplexes. This is likely due to their greater interactions with biological membranes at acidic than neutral pH.


Assuntos
Poliaminas/toxicidade , Polietilenoimina/toxicidade , Transfecção/métodos , Células A549 , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Endossomos/metabolismo , Genes Reporter/genética , Terapia Genética/efeitos adversos , Terapia Genética/métodos , Vetores Genéticos/genética , Humanos , Concentração de Íons de Hidrogênio , Luciferases/genética , Luciferases/metabolismo , Lisossomos/metabolismo , Peso Molecular , Plasmídeos/genética , Poliaminas/química , Polietilenoimina/química , Testes de Toxicidade Aguda
14.
Mol Pharm ; 14(8): 2629-2638, 2017 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-28648070

RESUMO

The rate and extent of drug dissolution and absorption from solid oral dosage forms is highly dependent on the volume of liquid in the gastrointestinal tract (GIT). However, little is known about the time course of GIT liquid volumes after drinking a glass of water (8 oz), particularly in the colon, which is a targeted site for both locally and systemically acting drug products. Previous magnetic resonance imaging (MRI) studies offered novel insights on GIT liquid distribution in fasted humans in the stomach and small intestine, and showed that freely mobile liquid in the intestine collects in fairly distinct regions or "pockets". Based on this previous pilot data, we hypothesized that (1) it is possible to quantify the time course of the volume and number of liquid pockets in the undisturbed colon of fasted healthy humans following ingestion of 240 mL, using noninvasive MRI methods; (2) the amount of freely mobile water in the fasted human colon is of the order of only a few milliliters. Twelve healthy volunteers fasted overnight and underwent fasted abdominal MRI scans before drinking 240 mL (∼8 fluid ounces) of water. After ingesting the water they were scanned at frequent intervals for 2 h. The images were processed to quantify freely mobile water in the total and regional colon: ascending, transverse, and descending. The fasted colon contained (mean ± SEM) 11 ± 5 pockets of resting liquid with a total volume of 2 ± 1 mL (average). The colonic fluid peaked at 7 ± 4 mL 30 min after the water drink. This peak fluid was distributed in 17 ± 7 separate liquid pockets in the colon. The regional analysis showed that pockets of free fluid were found primarily in the ascending colon. The interindividual variability was very high; the subjects showed a range of number of colonic fluid pockets from 0 to 89 and total colonic freely mobile fluid volume from 0 to 49 mL. This is the first study measuring the time course of the number, regional location, and volume of pockets of freely mobile liquid in the undisturbed colon of fasted humans after ingestion of a glass of water. Novel insights into the colonic fluid environment will be particularly relevant to improve our understanding and design of the in vivo performance of controlled release formulations targeted to the colon. The in vivo quantitative information presented here can be input into physiologically based mechanistic models of dissolution and absorption, and can be used in the design and set up of novel in vitro performance tools predictive of the in vivo environment.


Assuntos
Trato Gastrointestinal/diagnóstico por imagem , Intestino Delgado/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Estômago/diagnóstico por imagem , Adulto , Colo/diagnóstico por imagem , Colo/metabolismo , Jejum/metabolismo , Feminino , Mucosa Gástrica/metabolismo , Trato Gastrointestinal/metabolismo , Voluntários Saudáveis , Humanos , Intestino Delgado/metabolismo , Masculino , Água/metabolismo , Adulto Jovem
15.
Mol Pharm ; 14(6): 2079-2087, 2017 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-28502181

RESUMO

A miniaturized, high-throughput assay was optimized to screen polymer-drug solid dispersions using a 2-D Inkjet printer. By simply printing nanoliter amounts of polymer and drug solutions onto an inert surface, drug/polymer microdots of tunable composition were produced in an easily addressable microarray format. The amount of material printed for each dried spot ranged from 25 ng to 650 ng. These arrays were used to assess the stability of drug/polymer dispersions with respect to recrystallization, using polarized light microscopy. One array with a panel of 6 drugs formulated at different ratios with a poly(vinylpyrrolidone-vinyl acetate) (PVPVA) copolymer was developed to estimate a possible bulk (gram-scale) approximation threshold from the final printed nanoamount of formulation. Another array was printed at a fixed final amount of material to establish a literature comparison of one drug formulated with different commercial polymers for validation. This new approach may offer significant efficiency in pharmaceutical formulation screening, with each experiment in the nanomicro-array format requiring from 3 up to 6 orders of magnitude lower amounts of sample than conventional screening methods.


Assuntos
Composição de Medicamentos/métodos , Polímeros/química , Povidona/análogos & derivados , Portadores de Fármacos/química , Microscopia de Polarização , Povidona/química
16.
Methods Mol Biol ; 1601: 43-59, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28470516

RESUMO

Mainstream adoption of physiologically relevant three-dimensional models has been slow in the last 50 years due to long, manual protocols with poor reproducibility, high price, and closed commercial platforms. This chapter describes high-throughput, low-cost, open methods for spheroid viability assessment which use readily available reagents and open-source software to analyze spheroid volume, metabolism, and enzymatic activity. We provide two ImageJ macros for automated spheroid size determination-for both single images and images in stacks. We also share an Excel template spreadsheet allowing users to rapidly process spheroid size data, analyze plate uniformity (such as edge effects and systematic seeding errors), detect outliers, and calculate dose-response. The methods would be useful to researchers in preclinical and translational research planning to move away from simplistic monolayer studies and explore 3D spheroid screens for drug safety and efficacy without substantial investment in money or time.


Assuntos
Sobrevivência Celular , Ensaios de Triagem em Larga Escala/métodos , Indicadores e Reagentes/metabolismo , Esferoides Celulares/fisiologia , Fosfatase Ácida/metabolismo , Encéfalo/citologia , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Ensaios de Triagem em Larga Escala/economia , Humanos , Processamento de Imagem Assistida por Computador , Oxazinas/química , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Software , Esferoides Celulares/citologia , Esferoides Celulares/metabolismo , Fatores de Tempo , Xantenos/química
17.
Exp Biol Med (Maywood) ; 241(5): 466-77, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26568330

RESUMO

Nanoparticle (NP) drug delivery systems may potentially enhance the efficacy of therapeutic agents. It is difficult to characterize many important properties of NPs in vivo and therefore attempts have been made to use realistic in vitro multicellular spheroids instead. In this paper, we have evaluated poly(glycerol-adipate) (PGA) NPs as a potential drug carrier for local brain cancer therapy. Various three-dimensional (3-D) cell culture models have been used to investigate the delivery properties of PGA NPs. Tumour cells in 3-D culture showed a much higher level of endocytic uptake of NPs than a mixed normal neonatal brain cell population. Differences in endocytic uptake of NPs in 2-D and 3-D models strongly suggest that it is very important to use in vitro 3-D cell culture models for evaluating this parameter. Tumour penetration of NPs is another important parameter which could be studied in 3-D cell models. The penetration of PGA NPs through 3-D cell culture varied between models, which will therefore require further study to develop useful and realistic in vitro models. Further use of 3-D cell culture models will be of benefit in the future development of new drug delivery systems, particularly for brain cancers which are more difficult to study in vivo.


Assuntos
Portadores de Fármacos/farmacocinética , Nanopartículas/metabolismo , Poliésteres/farmacocinética , Animais , Neoplasias Encefálicas , Técnicas de Cultura de Células , Humanos , Modelos Biológicos , Técnicas de Cultura de Órgãos , Ratos Wistar
18.
J Polym Sci A Polym Chem ; 54(20): 3267-3278, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28781423

RESUMO

There is an increasing need to develop bio-compatible polymers with an increased range of different physicochemical properties. Poly(glycerol-adipate) (PGA) is a biocompatible, biodegradable amphiphilic polyester routinely produced from divinyl adipate and unprotected glycerol by an enzymatic route, bearing a hydroxyl group that can be further functionalized. Polymers with an average Mn of ∼13 kDa can be synthesized without any post-polymerization deprotection reactions. Acylated polymers with fatty acid chain length of C4, C8, and C18 (PGAB, PGAO, and PGAS, respectively) at different degrees of substitution were prepared. These modifications yield comb-like polymers that modulate the amphiphilic characteristics of PGA. This novel class of biocompatible polymers has been characterized through various techniques such as FT-IR, 1H NMR, surface, thermal analysis, and their ability to self-assemble into colloidal structures was evaluated by using DLS. The highly tunable properties of PGA reported herein demonstrate a biodegradable polymer platform, ideal for engineering solid dispersions, nanoemulsions, or nanoparticles for healthcare applications. © 2016 The Authors. Journal of Polymer Science Part A: Polymer Chemistry Published by Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016, 54, 3267-3278.

19.
J Biotechnol ; 205: 3-13, 2015 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-25592050

RESUMO

Physiologically relevant in vitro models can serve as biological analytical platforms for testing novel treatments and drug delivery systems. We describe the first steps in the development of a 3D human brain tumour co-culture model that includes the interplay between normal and tumour tissue along with nutrient gradients, cell-cell and cell-matrix interactions. The human medulloblastoma cell line UW228-3 and human foetal brain tissue were marked with two supravital fluorescent dyes (CDCFDASE, Celltrace Violet) and cultured together in ultra-low attachment 96-well plates to form reproducible single co-culture spheroids (d = 600 µm, CV% = 10%). Spheroids were treated with model cytotoxic drug etoposide (0.3-100 µM) and the viability of normal and tumour tissue quantified separately using flow cytometry and multiphoton microscopy. Etoposide levels of 10 µM were found to maximise toxicity to tumours (6.5% viability) while stem cells maintained a surviving fraction of 40%. The flexible cell marking procedure and high-throughput compatible protocol make this platform highly transferable to other cell types, primary tissues and personalised screening programs. The model's key anticipated use is for screening and assessment of drug delivery strategies to target brain tumours, and is ready for further developments, e.g. differentiation of stem cells to a range of cell types and more extensive biological validation.


Assuntos
Antineoplásicos/farmacologia , Técnicas de Cocultura/métodos , Células-Tronco Neurais/citologia , Esferoides Celulares/efeitos dos fármacos , Neoplasias Encefálicas/patologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Ensaios de Seleção de Medicamentos Antitumorais , Etoposídeo/farmacologia , Humanos , Meduloblastoma/patologia , Modelos Biológicos , Células-Tronco Neurais/efeitos dos fármacos
20.
Mol Pharm ; 11(9): 3039-47, 2014 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-25115349

RESUMO

The rate and extent of drug dissolution and absorption from solid oral dosage forms is highly dependent upon the volumes and distribution of gastric and small intestinal water. However, little is known about the time courses and distribution of water volumes in vivo in an undisturbed gut. Previous imaging studies offered a snapshot of water distribution in fasted humans and showed that water in the small intestine is distributed in small pockets. This study aimed to quantify the volume and number of water pockets in the upper gut of fasted healthy humans following ingestion of a glass of water (240 mL, as recommended for bioavailability/bioequivalence (BA/BE) studies), using recently validated noninvasive magnetic resonance imaging (MRI) methods. Twelve healthy volunteers underwent upper and lower abdominal MRI scans before drinking 240 mL (8 fluid ounces) of water. After ingesting the water, they were scanned at intervals for 2 h. The drink volume, inclusion criteria, and fasting conditions matched the international standards for BA/BE testing in healthy volunteers. The images were processed for gastric and intestinal total water volumes and for the number and volume of separate intestinal water pockets larger than 0.5 mL. The fasted stomach contained 35 ± 7 mL (mean ± SEM) of resting water. Upon drinking, the gastric fluid rose to 242 ± 9 mL. The gastric water volume declined rapidly after that with a half emptying time (T50%) of 13 ± 1 min. The mean gastric volume returned back to baseline 45 min after the drink. The fasted small bowel contained a total volume of 43 ± 14 mL of resting water. Twelve minutes after ingestion of water, small bowel water content rose to a maximum value of 94 ± 24 mL contained within 15 ± 2 pockets of 6 ± 2 mL each. At 45 min, when the glass of water had emptied completely from the stomach, total intestinal water volume was 77 ± 15 mL distributed into 16 ± 3 pockets of 5 ± 1 mL each. MRI provided unprecedented insights into the time course, number, volume, and location of water pockets in the stomach and small intestine under conditions that represent standard BA/BE studies using validated techniques. These data add to our current understanding of gastrointestinal physiology and will help improve physiological relevance of in vitro testing methods and in silico transport analyses for prediction of bioperformance of oral solid dosage forms, particularly for low solubility Biopharmaceutics Classification System (BCS) Class 2 and Class 4 compounds.


Assuntos
Jejum/metabolismo , Jejum/fisiologia , Mucosa Gástrica/metabolismo , Intestino Delgado/metabolismo , Água/metabolismo , Adulto , Disponibilidade Biológica , Ingestão de Alimentos/fisiologia , Feminino , Esvaziamento Gástrico/fisiologia , Humanos , Absorção Intestinal/fisiologia , Intestino Delgado/fisiologia , Imageamento por Ressonância Magnética/métodos , Masculino , Solubilidade , Estômago/fisiologia , Distribuição Tecidual/fisiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...