Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 3(4): e2040, 2008 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-18446213

RESUMO

BACKGROUND: Escherichia coli strains adhere to the normally sterile human uroepithelium using type 1 pili, that are long, hairy surface organelles exposing a mannose-binding FimH adhesin at the tip. A small percentage of adhered bacteria can successfully invade bladder cells, presumably via pathways mediated by the high-mannosylated uroplakin-Ia and alpha3beta1 integrins found throughout the uroepithelium. Invaded bacteria replicate and mature into dense, biofilm-like inclusions in preparation of fluxing and of infection of neighbouring cells, being the major cause of the troublesome recurrent urinary tract infections. METHODOLOGY/PRINCIPAL FINDINGS: We demonstrate that alpha-D-mannose based inhibitors of FimH not only block bacterial adhesion on uroepithelial cells but also antagonize invasion and biofilm formation. Heptyl alpha-D-mannose prevents binding of type 1-piliated E. coli to the human bladder cell line 5637 and reduces both adhesion and invasion of the UTI89 cystitis isolate instilled in mouse bladder via catheterization. Heptyl alpha-D-mannose also specifically inhibited biofilm formation at micromolar concentrations. The structural basis of the great inhibitory potential of alkyl and aryl alpha-D-mannosides was elucidated in the crystal structure of the FimH receptor-binding domain in complex with oligomannose-3. FimH interacts with Man alpha1,3Man beta1,4GlcNAc beta1,4GlcNAc in an extended binding site. The interactions along the alpha1,3 glycosidic bond and the first beta1,4 linkage to the chitobiose unit are conserved with those of FimH with butyl alpha-D-mannose. The strong stacking of the central mannose with the aromatic ring of Tyr48 is congruent with the high affinity found for synthetic inhibitors in which this mannose is substituted for by an aromatic group. CONCLUSIONS/SIGNIFICANCE: The potential of ligand-based design of antagonists of urinary tract infections is ruled by the structural mimicry of natural epitopes and extends into blocking of bacterial invasion, intracellular growth and capacity to fluxing and of recurrence of the infection.


Assuntos
Adesinas de Escherichia coli/metabolismo , Antibacterianos/uso terapêutico , Escherichia coli/química , Proteínas de Fímbrias/química , Oligossacarídeos/química , Infecções Urinárias/tratamento farmacológico , Adesinas de Escherichia coli/química , Animais , Antibacterianos/farmacologia , Asparagina/metabolismo , Aderência Bacteriana/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Linhagem Celular , Cristalografia por Raios X , Cistite/microbiologia , Dissacarídeos/metabolismo , Modelos Animais de Doenças , Escherichia coli/efeitos dos fármacos , Escherichia coli/fisiologia , Proteínas de Fímbrias/metabolismo , Fímbrias Bacterianas/efeitos dos fármacos , Glicosilação/efeitos dos fármacos , Humanos , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Manosídeos/metabolismo , Camundongos , Estrutura Terciária de Proteína , Receptores de Superfície Celular/metabolismo , Especificidade por Substrato/efeitos dos fármacos
2.
Infect Immun ; 75(1): 52-60, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17074856

RESUMO

Nearly 50% of women experience at least one urinary tract infection (UTI) in their lifetime. Studies with mice have revealed that uropathogenic Escherichia coli (UPEC) isolates invade superficial umbrella cells that line the bladder, allowing them to find a safe haven and subvert clearance by innate host responses. Rapid intracellular replication results in the formation of distinctive intracellular bacterial communities (IBCs). In this study, we evaluated whether UPEC strains cultured from the urine of women and classified as causing acute cystitis, recurrent cystitis, asymptomatic bacteriuria, or pyelonephritis could progress through the IBC cascade in a well-characterized mouse model of cystitis. Of 18 UPEC isolates collected from women, 15 formed IBCs. Variations in the size, number, and kinetics of IBC formation were observed with strains isolated from women with different clinical syndromes. Two of the three isolates that did not form IBCs when inoculated alone were able to do so when coinoculated with an isolate that was capable of generating IBCs. The mixed infections dramatically altered the behavior of the coinfecting bacteria relative to their behavior in a single infection. The study also showed that mice with five different genetic backgrounds can support IBC formation. Although UPEC isolates differ genetically in their virulence factors, the majority of UPEC isolates from different types of UTI proceed through the IBC pathway, confirming the generality of IBCs in UTI pathogenesis in mice.


Assuntos
Infecções por Escherichia coli/microbiologia , Escherichia coli/patogenicidade , Infecções Urinárias/microbiologia , Urotélio/microbiologia , Animais , Modelos Animais de Doenças , Escherichia coli/genética , Feminino , Humanos , Camundongos , Microscopia Confocal , Reação em Cadeia da Polimerase , Virulência , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA