Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glob Ecol Biogeogr ; 23(6): 620-632, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24791149

RESUMO

AIM: Phylogenetic diversity patterns are increasingly being used to better understand the role of ecological and evolutionary processes in community assembly. Here, we quantify how these patterns are influenced by scale choices in terms of spatial and environmental extent and organismic scales. LOCATION: European Alps. METHODS: We applied 42 sampling strategies differing in their combination of focal scales. For each resulting sub-dataset, we estimated the phylogenetic diversity of the species pools, phylogenetic α-diversities of local communities, and statistics commonly used together with null models in order to infer non-random diversity patterns (i.e. phylogenetic clustering versus over-dispersion). Finally, we studied the effects of scale choices on these measures using regression analyses. RESULTS: Scale choices were decisive for revealing signals in diversity patterns. Notably, changes in focal scales sometimes reversed a pattern of over-dispersion into clustering. Organismic scale had a stronger effect than spatial and environmental extent. However, we did not find general rules for the direction of change from over-dispersion to clustering with changing scales. Importantly, these scale issues had only a weak influence when focusing on regional diversity patterns that change along abiotic gradients. MAIN CONCLUSIONS: Our results call for caution when combining phylogenetic data with distributional data to study how and why communities differ from random expectations of phylogenetic relatedness. These analyses seem to be robust when the focus is on relating community diversity patterns to variation in habitat conditions, such as abiotic gradients. However, if the focus is on identifying relevant assembly rules for local communities, the uncertainty arising from a certain scale choice can be immense. In the latter case, it becomes necessary to test whether emerging patterns are robust to alternative scale choices.

2.
Ecography ; 37(12): 1254-1266, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25722539

RESUMO

Climate and land cover changes are important drivers of the plant species distributions and diversity patterns in mountainous regions. Although the need for a multifaceted view of diversity based on taxonomic, functional and phylogenetic dimensions is now commonly recognized, there are no complete risk assessments concerning their expected changes. In this paper, we used a range of species distribution models in an ensemble-forecasting framework together with regional climate and land cover projections by 2080 to analyze the potential threat for more than 2,500 plant species at high resolution (2.5 km × 2.5 km) in the French Alps. We also decomposed taxonomic, functional and phylogenetic diversity facets into α and ß components and analyzed their expected changes by 2080. Overall, plant species threats from climate and land cover changes in the French Alps were expected to vary depending on the species' preferred altitudinal vegetation zone, rarity, and conservation status. Indeed, rare species and species of conservation concern were the ones projected to experience less severe change, and also the ones being the most efficiently preserved by the current network of protected areas. Conversely, the three facets of plant diversity were also projected to experience drastic spatial re-shuffling by 2080. In general, the mean α-diversity of the three facets was projected to increase to the detriment of regional ß-diversity, although the latter was projected to remain high at the montane-alpine transition zones. Our results show that, due to a high-altitude distribution, the current protection network is efficient for rare species, and species predicted to migrate upward. Although our modeling framework may not capture all possible mechanisms of species range shifts, our work illustrates that a comprehensive risk assessment on an entire floristic region combined with functional and phylogenetic information can help delimitate future scenarios of biodiversity and better design its protection.

3.
J Biogeogr ; 40(8): 1560-1571, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24790288

RESUMO

AIM: Metacommunity theories attribute different relative degrees of importance to dispersal, environmental filtering, biotic interactions and stochastic processes in community assembly, but the role of spatial scale remains uncertain. Here we used two complementary statistical tools to test: (1) whether or not the patterns of community structure and environmental influences are consistent across resolutions; and (2) whether and how the joint use of two fundamentally different statistical approaches provides a complementary interpretation of results. LOCATION: Grassland plants in the French Alps. METHODS: We used two approaches across five spatial resolutions (ranging from 1 km × 1 km to 30 km × 30 km): variance partitioning, and analysis of metacommunity structure on the site-by-species incidence matrices. Both methods allow the testing of expected patterns resulting from environmental filtering, but variance partitioning allows the role of dispersal and environmental gradients to be studied, while analysis of the site-by-species metacommunity structure informs an understanding of how environmental filtering occurs and whether or not patterns differ from chance expectation. We also used spatial regressions on species richness to identify relevant environmental factors at each scale and to link results from the two approaches. RESULTS: Major environmental drivers of richness included growing degree-days, temperature, moisture and spatial or temporal heterogeneity. Variance partitioning pointed to an increase in the role of dispersal at coarser resolutions, while metacommunity structure analysis pointed to environmental filtering having an important role at all resolutions through a Clementsian assembly process (i.e. groups of species having similar range boundaries and co-occurring in similar environments). MAIN CONCLUSIONS: The combination of methods used here allows a better understanding of the forces structuring ecological communities than either one of them used separately. A key aspect in this complementarity is that variance partitioning can detect effects of dispersal whereas metacommunity structure analysis cannot. Moreover, the latter can distinguish between different forms of environmental filtering (e.g. individualistic versus group species responses to environmental gradients).

4.
Glob Ecol Biogeogr ; 22(8): 933-941, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24790524

RESUMO

AIM: Understanding the stability of realized niches is crucial for predicting the responses of species to climate change. One approach is to evaluate the niche differences of populations of the same species that occupy regions that are geographically disconnected. Here, we assess niche conservatism along thermal gradients for 26 plant species with a disjunct distribution between the Alps and the Arctic. LOCATION: European Alps and Norwegian Finnmark. METHODS: We collected a comprehensive dataset of 26 arctic-alpine plant occurrences in two regions. We assessed niche conservatism through a multispecies comparison and analysed species rankings at cold and warm thermal limits along two distinct gradients corresponding to (1) air temperatures at 2 m above ground level and (2) elevation distances to the tree line (TLD) for the two regions. We assessed whether observed relationships were close to those predicted under thermal limit conservatism. RESULTS: We found a weak similarity in species ranking at the warm thermal limits. The range of warm thermal limits for the 26 species was much larger in the Alps than in Finnmark. We found a stronger similarity in species ranking and correspondence at the cold thermal limit along the gradients of 2-m temperature and TLD. Yet along the 2-m temperature gradient the cold thermal limits of species in the Alps were lower on average than those in Finnmark. MAIN CONCLUSION: We found low conservatism of the warm thermal limits but a stronger conservatism of the cold thermal limits. We suggest that biotic interactions at the warm thermal limit are likely to modulate species responses more strongly than at the cold limit. The differing biotic context between the two regions is probably responsible for the observed differences in realized niches.

5.
Ecol Lett ; 15(12): 1439-48, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23006492

RESUMO

The Convention on Biological Diversity (CBD) aims at the conservation of all three levels of biodiversity, that is, ecosystems, species and genes. Genetic diversity represents evolutionary potential and is important for ecosystem functioning. Unfortunately, genetic diversity in natural populations is hardly considered in conservation strategies because it is difficult to measure and has been hypothesised to co-vary with species richness. This means that species richness is taken as a surrogate of genetic diversity in conservation planning, though their relationship has not been properly evaluated. We tested whether the genetic and species levels of biodiversity co-vary, using a large-scale and multi-species approach. We chose the high-mountain flora of the Alps and the Carpathians as study systems and demonstrate that species richness and genetic diversity are not correlated. Species richness thus cannot act as a surrogate for genetic diversity. Our results have important consequences for implementing the CBD when designing conservation strategies.


Assuntos
Biodiversidade , Variação Genética , Plantas/genética , Ecossistema , Geografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...