Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 273
Filtrar
1.
Front Immunol ; 15: 1418678, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39021574

RESUMO

Background: Knowledge about SARS-CoV-2 antibody dynamics in neonates and direct comparisons with maternal antibody responses are not well established. This study aimed to characterize and directly compare the maternal and infant antibody response in a national birth cohort from the Faroe Islands. Methods: The levels of immunoglobulins (Ig) targeting the receptor binding domain (RBD) of the spike protein and the nucleocapsid protein (N protein) of SARS-CoV-2 were investigated in maternal blood and umbilical cord blood from neonates. The study included 537 neonates and 565 mothers from the Faroe Islands, and follow-up samples were collected 12 months after birth. Multiple linear regression models were used to assess associations of maternal parameters with maternal and neonatal Ig levels and pregnancy outcomes. Results: The finding showed that neonates acquired varying levels of SARS-CoV-2 antibodies through transplacental transfer, and the levels were significantly influenced by the mother's vaccination and infection status. The study also found that maternal vaccination and the presence of SARS-CoV-2 antibodies targeting spike RBD were associated with gestational age and APGAR scores. Furthermore, the anti-RBD and -N protein-specific antibody response dynamics during 12 months after birth exhibited differences between mothers and children. RBD and N protein responses were maintained at follow-up in the mother's cohort, while only the N protein response was maintained at follow-up in the children's cohort. Conclusion: In conclusion, SARS-CoV-2-specific immune responses in newborns rely on maternal immunity, while the persistence of SARS-CoV-2-specific Igs appears to be differently regulated between mothers and children. The study provides new insights into the dynamics of SARS-CoV-2-specific immune responses in newborns and underscores the nuanced relationship between maternal factors and neonatal humoral responses.


Assuntos
Anticorpos Antivirais , COVID-19 , Proteínas do Nucleocapsídeo de Coronavírus , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Humanos , Feminino , SARS-CoV-2/imunologia , COVID-19/imunologia , Gravidez , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Recém-Nascido , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Adulto , Imunidade Materno-Adquirida , Lactente , Masculino , Estudos de Coortes , Fosfoproteínas/imunologia , Complicações Infecciosas na Gravidez/imunologia , Sangue Fetal/imunologia
2.
Viruses ; 16(6)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38932153

RESUMO

As solid organ transplant (SOT) recipients remain at risk of severe outcomes after SARS-CoV-2 infections, vaccination continues to be an important preventive measure. In SOT recipients previously vaccinated with at least three doses of BNT162b2, we investigated humoral responses to BNT162b2 booster doses. Anti-SARS-CoV-2 receptor binding domain (RBD) immunoglobulin G (IgG) was measured using an in-house ELISA. Linear mixed models were fitted to investigate the change in the geometric mean concentration (GMC) of anti-SARS-CoV-2 RBD IgG after vaccination in participants with intervals of more or less than six months between the last two doses of vaccine. We included 107 SOT recipients vaccinated with a BNT162b2 vaccine. In participants with an interval of more than six months between the last two vaccine doses, we found a 1.34-fold change in GMC per month (95% CI 1.25-1.44), while we found a 1.09-fold change in GMC per month (95% CI 0.89-1.34) in participants with an interval of less than six months between the last two vaccine doses, resulting in a rate ratio of 0.82 (95% CI 0.66 to 1.01, p = 0.063). In conclusion, the administration of identical COVID-19 mRNA vaccine boosters within six months to SOT recipients may result in limited humoral immunogenicity of the last dose.


Assuntos
Anticorpos Antivirais , Vacina BNT162 , Vacinas contra COVID-19 , COVID-19 , Imunidade Humoral , Imunização Secundária , Imunoglobulina G , Transplante de Órgãos , SARS-CoV-2 , Transplantados , Humanos , Vacina BNT162/imunologia , Vacina BNT162/administração & dosagem , COVID-19/prevenção & controle , COVID-19/imunologia , Masculino , Feminino , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Pessoa de Meia-Idade , SARS-CoV-2/imunologia , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Idoso , Adulto , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Vacinação , Glicoproteína da Espícula de Coronavírus/imunologia
3.
Front Immunol ; 15: 1422370, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38938578

RESUMO

Introduction: Hematopoietic stem cell transplantation (HSCT) is associated with immune complications and endothelial dysfunction due to intricate donor-recipient interactions, conditioning regimens, and inflammatory responses. Methods: This study investigated the role of the complement system during HSCT and its interaction with the cytokine network. Seventeen acute myeloid leukemia patients undergoing HSCT were monitored, including blood sampling from the start of the conditioning regimen until four weeks post-transplant. Clinical follow-up was 200 days. Results: Total complement functional activity was measured by WIELISA and the degree of complement activation by ELISA measurement of sC5b-9. Cytokine release was measured using a 27-multiplex immuno-assay. At all time-points during HSCT complement functional activity remained comparable to healthy controls. Complement activation was continuously stable except for two patients demonstrating increased activation, consistent with severe endotheliopathy and infections. In vitro experiments with post-HSCT whole blood challenged with Escherichia coli, revealed a hyperinflammatory cytokine response with increased TNF, IL-1ß, IL-6 and IL-8 formation. Complement C3 inhibition markedly reduced the cytokine response induced by Staphylococcus aureus, Aspergillus fumigatus, and cholesterol crystals. Discussion: In conclusion, HSCT patients generally retained a fully functional complement system, whereas activation occurred in patients with severe complications. The complement-cytokine interaction indicates the potential for new complement-targeting therapeutic strategies in HSCT.


Assuntos
Ativação do Complemento , Citocinas , Transplante de Células-Tronco Hematopoéticas , Transplante Homólogo , Humanos , Masculino , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Feminino , Pessoa de Meia-Idade , Adulto , Citocinas/metabolismo , Idoso , Leucemia Mieloide Aguda/terapia , Leucemia Mieloide Aguda/imunologia , Proteínas do Sistema Complemento/imunologia , Proteínas do Sistema Complemento/metabolismo , Condicionamento Pré-Transplante/métodos , Adulto Jovem
4.
ACR Open Rheumatol ; 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38923834

RESUMO

OBJECTIVE: Rituximab (RTX)-treated patients exhibit suboptimal responses to COVID-19 vaccines. However, existing research primarily involves patients already receiving RTX when vaccines were introduced, failing to account for the current landscape where patients are vaccinated before initiating RTX. Our objective was to compare the serological response to COVID-19 vaccines in patients vaccinated before or after RTX initiation. METHODS: We included 254 RTX-treated patients with autoimmune inflammatory rheumatic diseases (AIIRDs) and 113 blood donors (BDs) in a retrospective, observational cohort study. Patients were categorized based on the timing of RTX treatment relative to primary COVID-19 vaccination. Serological vaccine responses were assessed using three immunoassays, and logistic regression analysis was used to identify predictors of serological response. RESULTS: Patients vaccinated before initiating RTX treatment had significantly higher seroconversion rates of SARS-CoV-2 immunoglobulin G (87%) and neutralizing antibodies (91%) compared with those receiving RTX before and after vaccination (n = 132) (61% and 65%, respectively). In the logistic regression analysis, a positive serological response was associated with the number of vaccines administered >9 months after the last RTX treatment. Patients receiving the highest number of vaccines with >9 months after RTX showed a response comparable to that of the BDs. CONCLUSION: Vaccinating before RTX initiation yields a robust serological response in patients with AIIRDs. Furthermore, we highlight the reversibility of antibody impairment after RTX treatment cessation, provided that adequate vaccinations occur within a minimum of 9 months after RTX. Our findings offer essential insights for clinical decision-making regarding COVID-19 vaccination and RTX treatment, alleviating concerns about future RTX use.

5.
J Innate Immun ; 16(1): 324-336, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38768576

RESUMO

INTRODUCTION: We aimed to elucidate the inflammatory response of Aspergillus fumigatus conidia in a whole-blood model of innate immune activation and to compare it with the well-characterized inflammatory reaction to Escherichia coli. METHODS: Employing a human lepirudin whole-blood model, we analyzed complement and leukocyte activation by measuring the sC5b-9 complex and assessing CD11b expression. A 27-multiplex system was used for quantification of cytokines. Selective cell removal from whole blood and inhibition of C3, C5, and CD14 were also applied. RESULTS: Our findings demonstrated a marked elevation in sC5b-9 and CD11b post-A. fumigatus incubation. Thirteen cytokines (TNF, IL-1ß, IL-1ra, IL-4, IL-6, IL-8, IL-17, IFNγ, MCP-1, MIP-1α, MIP-1ß, FGF-basic, and G-CSF) showed increased levels. A generally lower level of cytokine release and CD11b expression was observed with A. fumigatus conidia than with E. coli. Notably, monocytes were instrumental in releasing all cytokines except MCP-1. IL-1ra was found to be both monocyte and granulocyte-dependent. Pre-inhibiting with C3 and CD14 inhibitors resulted in decreased release patterns for six cytokines (TNF, IL-1ß, IL-6, IL-8, MIP-1α, and MIP-1ß), with minimal effects by C5-inhibition. CONCLUSION: A. fumigatus conidia induced complement activation comparable to E. coli, whereas CD11b expression and cytokine release were lower, underscoring distinct inflammatory responses between these pathogens. Complement C3 inhibition attenuated cytokine release indicating a C3-level role of complement in A. fumigatus immunity.


Assuntos
Aspergilose , Aspergillus fumigatus , Ativação do Complemento , Citocinas , Escherichia coli , Esporos Fúngicos , Aspergillus fumigatus/imunologia , Humanos , Ativação do Complemento/imunologia , Citocinas/metabolismo , Esporos Fúngicos/imunologia , Aspergilose/imunologia , Escherichia coli/imunologia , Antígeno CD11b/metabolismo , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Complexo de Ataque à Membrana do Sistema Complemento/imunologia , Imunidade Inata , Inflamação/imunologia , Complemento C3/imunologia , Complemento C3/metabolismo , Receptores de Lipopolissacarídeos/metabolismo , Células Cultivadas , Monócitos/imunologia
6.
J Immunol ; 212(9): 1493-1503, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38488502

RESUMO

Previous studies of pattern recognition molecules (PRMs) of the complement system have revealed difficulties in observing binding on pathogens such as Aspergillus fumigatus and Escherichia coli, despite complement deposition indicative of classical and lectin pathway activation. Thus, we investigated the binding dynamics of PRMs of the complement system, specifically C1q of the classical pathway and mannose-binding lectin (MBL) of the lectin pathway. We observed consistently increasing deposition of essential complement components such as C4b, C3b, and the terminal complement complex on A. fumigatus and E. coli. However, C1q and MBL binding to the surface rapidly declined during incubation after just 2-4 min in 10% plasma. The detachment of C1q and MBL can be linked to complement cascade activation, as the PRMs remain bound in the absence of plasma. The dissociation and the fate of C1q and MBL seem to have different mechanistic functions. Notably, C1q dynamics were associated with local C1 complex activation. When C1s was inhibited in plasma, C1q binding not only remained high but further increased over time. In contrast, MBL binding was inversely correlated with total and early complement activation due to MBL binding being partially retained by complement inhibition. Results indicate that detached MBL might be able to functionally rebind to A. fumigatus. In conclusion, these results reveal a (to our knowledge) novel "hit-and-run" complement-dependent PRM dynamic mechanism on pathogens. These dynamics may have profound implications for host defense and may help increase the functionality and longevity of complement-dependent PRMs in circulation.


Assuntos
Complemento C1q , Lectina de Ligação a Manose , Escherichia coli/metabolismo , Lectina de Ligação a Manose/metabolismo , Proteínas do Sistema Complemento , Ativação do Complemento , Lectinas/metabolismo , Lectina de Ligação a Manose da Via do Complemento
7.
Front Immunol ; 15: 1330095, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38333209

RESUMO

Introduction: The complement system is part of innate immunity and is comprised of an intricate network of proteins that are vital for host defense and host homeostasis. A distinct mechanism by which complement defends against invading pathogens is through the membrane attack complex (MAC), a lytic structure that forms on target surfaces. The MAC is made up of several complement components, and one indispensable component of the MAC is C7. The role of C7 in MAC assembly is well documented, however, inherent characteristics of C7 are yet to be investigated. Methods: To shed light on the molecular characteristics of C7, we examined the properties of serum-purified C7 acquired using polyclonal and novel monoclonal antibodies. The properties of serum­purified C7 were investigated through a series of proteolytic analyses, encompassing Western blot and mass spectrometry. The nature of C7 protein-protein interactions were further examined by a novel enzyme-linked immunosorbent assay (ELISA), as well as size­exclusion chromatography. Results: Protein analyses showcased an association between C7 and clusterin, an inhibitory complement regulator. The distinct association between C7 and clusterin was also demonstrated in serum-purified clusterin. Further assessment revealed that a complex between C7 and clusterin (C7-CLU) was detected. The C7-CLU complex was also identified in healthy serum and plasma donors, highlighting the presence of the complex in circulation. Discussion: Clusterin is known to dissociate the MAC structure by binding to polymerized C9, nevertheless, here we show clusterin binding to the native form of a terminal complement protein in vivo. The presented data reveal that C7 exhibits characteristics beyond that of MAC assembly, instigating further investigation of the effector role that the C7-CLU complex plays in the complement cascade.


Assuntos
Clusterina , Complemento C7 , Complemento C7/metabolismo , Proteínas do Sistema Complemento/metabolismo , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Ativação do Complemento
8.
J Leukoc Biol ; 115(4): 647-663, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38057165

RESUMO

The lepirudin-based human whole blood model is a well-established ex vivo system to characterize inflammatory responses. However, the contribution of individual cell populations to cytokine release has not been investigated. Thus, we modified the model by selectively removing leukocyte subpopulations to elucidate their contribution to the inflammatory response. Lepirudin-anticoagulated whole blood was depleted from monocytes or granulocytes using StraightFrom Whole Blood MicroBeads. Reconstituted blood was incubated with Escherichia coli (108/mL) for 2 hours at 37 °C. CD11b, CD62P, and CD63 were detected by flow cytometry. Complement (C3bc, sC5b-9) and platelet activation (platelet factor 4, NAP-2) were measured by enzyme-linked immunosorbent assay. Cytokines were quantified by multiplex assay. A significant (P < 0.05) specific depletion of the monocyte (mean = 86%; 95% confidence interval = 71%-92%) and granulocyte (mean = 97%; 95% confidence interval = 96%-98%) population was obtained. Background activation induced by the depletion protocol was negligible for complement (C3bc and sC5b-9), leukocytes (CD11b), and platelets (NAP-2). Upon Escherichia coli incubation, release of 10 of the 24 cytokines was solely dependent on monocytes (interleukin [IL]-1ß, IL-2, IL-4, IL-5, IL-17A, interferon-γ, granulocyte colony-stimulating factor, granulocyte-macrophage colony-stimulating factor, macrophage inflammatory protein-1α, and fibroblast growth factor-basic), whereas 8 were dependent on both monocytes and granulocytes (IL-1ra, IL-6, IL-8, IL-9, IL-10, macrophage inflammatory protein-1ß, tumor necrosis factor, and eotaxin). Six cytokines were not monocyte or granulocyte dependent, of which platelet-derived growth factor and RANTES were mainly platelet dependent. We document an effective model for selective depletion of leukocyte subpopulations from whole blood, without causing background activation, allowing in-depth cellular characterization. The results are in accordance with monocytes playing a major role in cytokine release and expand our knowledge of the significant role of granulocytes in the response to E. coli.


Assuntos
Citocinas , Monócitos , Humanos , Citocinas/metabolismo , Monócitos/metabolismo , Escherichia coli , Granulócitos/metabolismo , Proteínas do Sistema Complemento/metabolismo
9.
Clin Exp Rheumatol ; 42(1): 157-165, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37877429

RESUMO

OBJECTIVES: To investigate the effect of COVID-19 mRNA revaccination (two doses) on the antibody response in patients with rheumatic diseases (RD) who were initial vaccine non-responders. Further, to examine if B-cell levels or T-cell responses before revaccination predicted seroconversion. METHODS: From a RD cohort vaccinated with the standard two-dose COVID-19 vaccinations, we enrolled cases without detectable antibody responses (n=17) and controls with detectable antibody response (n=29). Blood donors (n=32) were included as additional controls. Samples were collected before and six weeks after completed revaccination. Total antibodies and specific IgG, IgA, and IgM against SARS-CoV-2 spike protein, SARS-CoV-2 neutralising antibodies, and SARS-CoV-2 reacting CD4+ and CD8+ T-cells were measured before and after revaccination. B-cells (CD19+CD45+) were quantified before revaccination. RESULTS: Forty-seven percent of cases had detectable neutralising antibodies after revaccination. However, antibody levels were significantly lower than in controls and blood donors. Revaccination induced an antibody class switch in cases with a decrease in IgM and increase in IgG. No significant difference was observed in T-cell responses before and after revaccination between the three groups. Only 29% of cases had measurable B-cells compared to 100% of controls and blood donors. Fifty percent of revaccinated cases who seroconverted had measurable B-cells before revaccination. CONCLUSIONS: Forty-seven percent of initial non-responders seroconverted after two-dose revaccination but still had lower levels of SARS-CoV-2 antibodies compared with controls and blood donors. RD patients without a detectable serological response after the initial COVID-19 mRNA vaccine had a T-cell response similar to immunocompetent controls and blood donors.


Assuntos
Artrite Reumatoide , COVID-19 , Lúpus Eritematoso Sistêmico , Doenças Reumáticas , Glicoproteína da Espícula de Coronavírus , Humanos , Vacinas contra COVID-19 , Imunização Secundária , Soroconversão , COVID-19/prevenção & controle , SARS-CoV-2 , Vacinação , Anticorpos Antivirais , Anticorpos Neutralizantes , Imunoglobulina G , Imunoglobulina M
11.
Kidney Int ; 105(3): 524-539, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38158182

RESUMO

The urinary tract is constantly exposed to microorganisms. Host defense mechanisms in protection from microbial colonization and development of urinary tract infections require better understanding to control kidney infection. Here we report that the lectin collectin 11 (CL-11), particularly kidney produced, has a pivotal role in host defense against uropathogen infection. CL-11 was found in mouse urine under normal and pathological conditions. Mice with global gene ablation of Colec11 had increased susceptibility to and severity of kidney and to an extent, bladder infection. Mice with kidney-specific Colec11 ablation exhibited a similar disease phenotype to that observed in global Colec11 deficient mice, indicating the importance of kidney produced CL-11 for protection against kidney and bladder infection. Conversely, intravesical or systemic administration of recombinant CL-11 reduced susceptibility to and severity of kidney and bladder infection. Mechanism analysis revealed that CL-11 can mediate several key innate defense mechanisms (agglutination, anti- adhesion, opsonophagocytosis), and limit local inflammatory responses to pathogens. Furthermore, CL-11-mediated innate defense mechanisms can act on clinically relevant microorganisms including multiple antibiotic resistant strains. CL-11 was detectable in eight of 24 urine samples from patients with urinary tract infections but not detectable in urine samples from ten healthy individuals. Thus, our findings demonstrate that CL-11 is a key factor of host defense mechanisms in kidney and bladder infection with therapeutic potential for human application.


Assuntos
Cistite , Infecções por Escherichia coli , Infecções Urinárias , Humanos , Camundongos , Animais , Bexiga Urinária , Rim , Colectinas/genética
12.
J Innate Immun ; 15(1): 836-849, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37952515

RESUMO

INTRODUCTION: The complement system anaphylatoxin C5a is a critical player in inflammation. By binding to complement C5a receptor 1 (C5aR1/CD88), C5a regulates many cellular functions, mainly as a potent pro-inflammatory inducer. We describe the generation and selection of a potent antagonistic C5aR1 mouse monoclonal antibody (mAb). METHODS: Initial C5aR1 hybridoma clone selection was performed with a cell-binding study in human whole blood. In-house C5aR1 mAb assessment for C5aR1 inhibition was done via the iLite® C5a assay. C5aR1 mAb specificity was investigated on C5aR1his- and C5aR2his-expressing Flp-In™-CHO cells. Physiological C5aR1 inhibition was assessed via a C5a-driven calcium flux assay and stimulation assay based on isolated polymorphonuclear leukocytes (PMNs) and a whole blood model stimulated with Escherichia coli. RESULTS: The supernatant of hybridoma clones targeting the N-terminal section of C5aR1 displayed efficient binding to C5aR1 in whole blood, which was confirmed for purified mAbs. The C5aR1 mAb 18-41-6 was selected following the assay of in-house C5aR1 mAbs via the iLite® C5a assay. The mAb 18-41-6 was specific for C5aR1. Full-size and/or F(ab')2 preparations of mAb 18-41-6 were found to efficiently abrogate C5a-induced calcium flux in neutrophils and to significantly reduce the upregulation of the activation markers CD11b (neutrophils, monocytes) and CD66b (neutrophils). CONCLUSION: Our results demonstrate that mAb 18-41-6 is a valuable tool for investigating the C5a-C5aR1 axis and a potential therapeutic candidate for inflammatory disease treatment.


Assuntos
Anticorpos Monoclonais , Cálcio , Cricetinae , Animais , Camundongos , Humanos , Cricetulus , Complemento C5a/metabolismo , Transdução de Sinais , Receptor da Anafilatoxina C5a
13.
Microbiol Spectr ; 11(6): e0086523, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37909772

RESUMO

IMPORTANCE: The immunity following infection and vaccination with the SARS-CoV-2 Omicron variant is poorly understood. We investigated immunity assessed with antibody and T-cell responses under different scenarios in vaccinated and unvaccinated individuals with and without Omicron infection. We found that the humoral response was higher among vaccinated-naïve than unvaccinated convalescent. Unvaccinated with and without infection had comparable low humoral responses, whereas vaccinated with a second or third dose, independent of infection status, had increasingly higher levels. Only a minor fraction of unvaccinated individuals had detectable humoral responses following Omicron infection, while almost all had positive T-cell responses. In conclusion, primary Omicron infection mounts a low humoral immune response, enhanced by prior vaccination. Omicron infection induced a robust T-cell response in both unvaccinated and vaccinated, demonstrating that immune evasion of primary Omicron infection affects humoral immunity more than T-cell immunity.


Assuntos
Evasão da Resposta Imune , Imunidade Humoral , Humanos , Dinamarca , Vacinação , Imunidade Celular , Anticorpos Antivirais , Anticorpos Neutralizantes
14.
J Neuroimmunol ; 384: 578215, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37797472

RESUMO

We investigated the humoral response to the Pfizer-BioNTech COVID-19 (BNT162b2) vaccine in patients with myasthenia gravis on or off immunosuppressants and compared this to the response in healthy individuals. The SARS-CoV-2 IgG response and neutralizing capacity were measured in 83 patients (57 on immunosuppressants) and 332 healthy controls at baseline, three weeks, and two and six months after the vaccine. We found that the proportion of positive humoral response was lower in patients on immunosuppressants vs. controls at three weeks and two months (p ≤ 0.001), but not at six months post-vaccination (p = 0.379).


Assuntos
COVID-19 , Miastenia Gravis , Humanos , Vacinas contra COVID-19 , Vacina BNT162 , Imunidade Humoral , SARS-CoV-2 , Anticorpos Antivirais , Imunossupressores/uso terapêutico , Vacinação
15.
FASEB J ; 37(11): e23256, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37823685

RESUMO

The complement system is a complex, tightly regulated protein cascade involved in pathogen defense and the pathogenesis of several diseases. Thus, the development of complement modulators has risen as a potential treatment for complement-driven inflammatory pathologies. The enzymatically inactive MAP-2 has been reported to inhibit the lectin pathway by competing with its homologous serine protease MASP-2. The membrane-bound complement inhibitor CD55 acts on the C3/C5 convertase level. Here, we fused MAP-2 to the four N-terminal domains of CD55 generating a targeted chimeric inhibitor to modulate complement activation at two different levels of the complement cascade. Its biological properties were compared in vitro with the parent molecules. While MAP-2 and CD55 alone showed a minor inhibition of the three complement pathways when co-incubated with serum (IC50MAP-2+CD55 1-4 = 60.98, 36.10, and 97.01 nM on the classical, lectin, and alternative pathways, respectively), MAP-2:CD551-4 demonstrated a potent inhibitory activity (IC50MAP-2:CD55 1-4 = 2.94, 1.76, and 12.86 nM, respectively). This inhibitory activity was substantially enhanced when pre-complexes were formed with the lectin pathway recognition molecule mannose-binding lectin (IC50MAP-2:CD55 1-4 = 0.14 nM). MAP-2:CD551-4 was also effective at protecting sensitized sheep erythrocytes in a classical hemolytic assay (CH50 = 13.35 nM). Finally, the chimeric inhibitor reduced neutrophil activation in full blood after stimulation with Aspergillus fumigatus conidia, as well as phagocytosis of conidia by isolated activated neutrophils. Our results demonstrate that MAP-2:CD551-4 is a potent complement inhibitor reinforcing the idea that engineered fusion proteins are a promising design strategy for identifying and developing drug candidates to treat complement-mediated diseases.


Assuntos
Ativação do Complemento , Proteínas do Sistema Complemento , Animais , Ovinos , Antígenos CD55/farmacologia , Lectinas/metabolismo , Fatores de Transcrição , Inativadores do Complemento , Serina Proteases Associadas a Proteína de Ligação a Manose/metabolismo
16.
Nat Commun ; 14(1): 5624, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37699890

RESUMO

The heterogeneity of the SARS-CoV-2 immune responses has become considerably more complex over time and diverse immune imprinting is observed in vaccinated individuals. Despite vaccination, following the emergence of the Omicron variant, some individuals appear more susceptible to primary infections and reinfections than others, underscoring the need to elucidate how immune responses are influenced by previous infections and vaccination. IgG, IgA, neutralizing antibodies and T-cell immune responses in 1,325 individuals (955 of which were infection-naive) were investigated before and after three doses of the BNT162b2 vaccine, examining their relation to breakthrough infections and immune imprinting in the context of Omicron. Our study shows that both humoral and cellular responses following vaccination were generally higher after SARS-CoV-2 infection compared to infection-naive. Notably, viral exposure before vaccination was crucial to achieving a robust IgA response. Individuals with lower IgG, IgA, and neutralizing antibody responses postvaccination had a significantly higher risk of reinfection and future Omicron infections. This was not observed for T-cell responses. A primary infection before Omicron and subsequent reinfection with Omicron dampened the humoral and cellular responses compared to a primary Omicron infection, consistent with immune imprinting. These results underscore the significant impact of hybrid immunity for immune responses in general, particularly for IgA responses even after revaccination, and the importance of robust humoral responses in preventing future infections.


Assuntos
Infecções Irruptivas , COVID-19 , Humanos , Reinfecção , Vacina BNT162 , SARS-CoV-2 , COVID-19/prevenção & controle , Vacinação , Anticorpos Neutralizantes , Imunidade , Imunoglobulina A , Imunoglobulina G
17.
Microbiol Spectr ; : e0179623, 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37738355

RESUMO

The prediction of the durability of immunity against COVID-19 is relevant, and longitudinal studies are essential for unraveling the details regarding protective SARS-CoV-2 antibody responses. It has become challenging to discriminate between COVID-19 vaccine- and infection-induced immune responses since all approved vaccines in Europe and the USA are based on the viral spike (S) protein, which is also the most commonly used antigen in immunoassays measuring immunoglobulins (Igs) against SARS-CoV-2. We have developed a nucleocapsid (N) protein-based sandwich ELISA for detecting pan anti-SARS-CoV-2 Ig with a sensitivity and specificity of 97%. Generalized mixed models were used to determine the degree of long-term humoral immunity against the N protein and the receptor-binding domain (RBD) of the S protein in a cohort of infected individuals to distinguish between COVID-19 vaccine- and infection-induced immunity. N-specific waning could be observed in individuals who did not experience reinfection, while individuals who experienced reinfection had a new significant increase in N-specific Ig levels. In individuals that seroconverted without a reinfection, 70.1% remained anti-N seropositive after 550 days. The anti-RBD Ig dynamics were unaffected by reinfection but exhibited a clear increase in RBD-specific Ig when vaccination was initiated. In conclusion, a clear difference in the dynamics of the antibody response against N protein and RBD was observed over time. Anti-N protein-specific Igs can be detected up to 18 months after SARS-CoV-2 infection allowing long-term discrimination of infectious and vaccine antibody responses.IMPORTANCELongitudinal studies are essential to unravel details regarding the protective antibody responses after COVID-19 infection and vaccination. It has become challenging to distinguish long-term immune responses to SARS-CoV-2 infection and vaccination since most approved vaccines are based on the viral spike (S) protein, which is also mostly used in immunoassays measuring immunoglobulins (Igs) against SARS-CoV-2. We have developed a novel nucleocapsid (N) protein-based sandwich ELISA for detecting pan-anti-SARS-CoV-2 Ig, exhibiting high sensitivity and specificity. Generalized mixed models were used to determine long-term humoral immunity in a cohort of infected individuals from the Faroe Islands, distinguishing between COVID-19 vaccine- and infection-induced immunity. A clear difference in the dynamics of the antibody response against N protein and S protein was observed over time, and the anti-N protein-specific Igs could be detected up to 18 months after SARS-CoV-2 infection. This enables long-term discrimination between natural infection and vaccine-dependent antibody responses.

18.
EBioMedicine ; 93: 104661, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37331161

RESUMO

BACKGROUND: We investigated long-term durability of humoral and cellular immune responses to third dose of BNT162b2 in people with HIV (PWH) and controls. METHODS: In 378 PWH with undetectable viral replication and 224 matched controls vaccinated with three doses of BNT162b2, we measured IgG-antibodies against the receptor binding domain of SARS-CoV-2 spike protein three months before third dose of BNT162b2, and four and eleven months after. In 178 PWH and 135 controls, the cellular response was assessed by interferon-γ (IFN-γ) release in whole blood four months after third dose. Differences in antibody or IFN-γ concentrations were assessed by uni- and multivariable linear regressions. FINDINGS: Before the third dose the concentration of SARS-CoV-2 antibodies was lower in PWH than in controls (unadjusted geometric mean ratio (GMR): 0.68 (95% CI: 0.54-0.86, p = 0.002). We observed no differences in antibody concentrations between PWH and controls after four (0.90 (95% CI: 0.75-1.09), p = 0.285) or eleven months (0.89 (95% CI: 0.69-1.14), p = 0.346) after the third dose. We found no difference in IFN-γ concentrations four months after the third dose between PWH and controls (1.06 (95% CI: 0.71-1.60), p = 0.767). INTERPRETATION: We found no differences in antibody concentrations or cellular response between PWH and controls up to eleven months after third dose of BNT162b2. Our findings indicate that PWH with undetectable viral replication and controls have comparable immune responses to three doses of the BNT162b2 vaccine. FUNDING: This work was funded by the Novo Nordisk Foundation (NFF205A0063505, NNF20SA0064201), the Carlsberg Foundation (CF20-476 0045), the Svend Andersen Research Foundation (SARF2021), and Bio- and Genome Bank Denmark.


Assuntos
COVID-19 , Infecções por HIV , Humanos , Vacina BNT162 , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Estudos Prospectivos , SARS-CoV-2 , Imunoglobulina G , Interferon gama , Anticorpos Antivirais , RNA Mensageiro
19.
Eur J Haematol ; 111(2): 229-239, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37151174

RESUMO

OBJECTIVES: Initial responses to coronavirus disease 2019 vaccination are impaired in patients with hematological malignancies. We investigated immune responses after three or four doses of BNT162b2 in patients with myeloid and lymphoid malignancies compared to controls, and identified risk factors for humoral and cellular nonresponse 1 year after first vaccination. METHODS: In 407 hematological patients (45 myeloid, 362 lymphoid) and 98 matched controls, we measured immunoglobulin G (IgG) and neutralizing antibodies specific for the receptor-binding domain of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) at baseline, 3 weeks, 2, 6, and 12 months, and interferon-γ release at 12 months. RESULTS: In patients with lymphoid malignancies, SARS-CoV-2 receptor-binding domain IgG concentration and mean neutralizing capacity was lower than in controls at all time points. A diagnosis of chronic lymphocytic B-cell leukemia (CLL) or lymphoma was associated with humoral nonresponse at 12 months compared to having multiple myeloma/amyloidosis (p < .001 and p = .013). Compared to controls, patients with lymphoid malignancies had increased risk of cellular nonresponse. A lymphoma diagnosis was associated with lower risk of cellular nonresponse compared to patients with multiple myeloma/amyloidosis, while patients with CLL had comparable response rates to patients with multiple myeloma/amyloidosis (p = .037 and p = .280). CONCLUSIONS: In conclusion, long-term humoral and cellular immune responses to BNT162b2 were impaired in patients with lymphoid malignancies.


Assuntos
Amiloidose , COVID-19 , Neoplasias Hematológicas , Leucemia Linfocítica Crônica de Células B , Mieloma Múltiplo , Humanos , Vacina BNT162 , SARS-CoV-2 , Neoplasias Hematológicas/diagnóstico , Imunoglobulina G , Imunidade Celular , Anticorpos Antivirais , Vacinação
20.
J Intern Med ; 293(6): 763-781, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37024264

RESUMO

BACKGROUND: Factors influencing SARS-CoV-2 antibody dynamics, transmission, waning and long COVID-19 symptomatology are still not fully understood. METHODS: In the Danish section of the Novo Nordisk Group, we performed a prospective seroepidemiological study during the first and second waves of the COVID-19 pandemic. All employees and their household members (>18 years) were invited to participate in a baseline (June-August 2020), 6-month follow-up (December 2020-January 2021), and 12-month follow-up (August 2021) sampling. In total, 18,614 accepted and provided at least one blood sample and completed a questionnaire regarding socioeconomic background, health status, previous SARS-CoV-2 infection, and persistent symptoms. Total antibody and specific IgM, IgG and IgA levels against recombinant receptor binding domain were tested. RESULTS: At baseline, the SARS-CoV-2-antibody seroprevalence was 3.9%. At 6-month follow-up, the seroprevalence was 9.1%, while at 12-month follow-up, the seroprevalence was 94.4% (after the vaccine roll-out). Male sex and younger age (18-40 years) were significant risk factors for seropositivity. From baseline to the 6-month sampling, we observed a substantial waning of IgM, IgG and IgA levels (p < 0.001), regardless of age, sex and initial antibody level. An increased antibody level was found in individuals infected prior to vaccination compared to vaccinated infection naïves (p < 0.0001). Approximately a third of the seropositive individuals reported one or more persistent COVID-19 symptoms, with anosmia and/or ageusia (17.5%) and fatigue (15.3%) being the most prevalent. CONCLUSION: The study provides a comprehensive insight into SARS-CoV-2 antibody seroprevalence following infection and vaccination, waning, persistent COVID-19 symptomatology and risk factors for seropositivity in large working environments.


Assuntos
COVID-19 , Humanos , Masculino , Adolescente , Adulto Jovem , Adulto , COVID-19/epidemiologia , Pandemias , Síndrome de COVID-19 Pós-Aguda , Estudos Prospectivos , SARS-CoV-2 , Estudos Soroepidemiológicos , Condições de Trabalho , Anticorpos Antivirais , Fatores de Risco , Imunoglobulina A , Imunoglobulina G , Imunoglobulina M
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...