Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 13(11): e10725, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37964788

RESUMO

Accurate interpretation of the genetic signatures of past demographic events is crucial for reconstructing evolutionary history. Lineage fusion (complete merging, resulting in a single panmictic population) is a special case of secondary contact that is seldom considered. Here, the circumstances under which lineage fusion can be distinguished from population size constancy, growth, bottleneck, and decline were investigated. Multi-locus haplotype data were simulated under models of lineage fusion with different divergence versus sampling lag times (D:L ratios). These pseudo-observed datasets also differed in their allocation of a fixed amount of sequencing resources (number of sampled alleles, haplotype length, number of loci). Distinguishability of lineage fusion versus each of 10 untrue non-fusion scenarios was quantified based on six summary statistics (neutrality tests). Some datasets were also analyzed using extended Bayesian skyline plots. Results showed that signatures of lineage fusion very closely resemble those of decline-high distinguishability was generally limited to the most favorable scenario (D:L = 9), using the most sensitive summary statistics (F S and Z nS), coupled with the optimal sequencing resource allocation (maximizing number of loci). Also, extended Bayesian skyline plots often erroneously inferred population decline. Awareness of the potential for lineage fusion to carry the hallmarks of population decline is critical.

2.
Mol Phylogenet Evol ; 186: 107843, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37286064

RESUMO

Understanding the processes that generate and maintain biodiversity at and below the species level is a central goal of evolutionary biology. Here we explore the spatial and temporal drivers of diversification of the treefrog subgroup Dendropsophus rubicundulus, a subgroup of the D. microcephalus species group, over periods of pronounced geological and climatic changes in the Neotropical savannas that they inhabit. This subgroup currently comprises 11 recognized species distributed across the Brazilian and Bolivian savannas, but the taxonomy has been in a state of flux, necessitating reexamination. Using newly generated single nucleotide polymorphism (SNP) data from restriction-site associated DNA sequencing (RADseq) and mitochondrial 16S sequence data for ∼150 specimens, we inferred phylogenetic relationships, tested species limits using a model-based approach, and estimated divergence times to gain insights into the geographic and climatic events that affected the diversification of this subgroup. Our results recognized at least nine species: D. anataliasiasi, D. araguaya, D. cerradensis, D. elianeae, D. jimi, D. rubicundulus, D. tritaeniatus, D. rozenmani, and D. sanborni. Although we did not collect SNP data for the latter two species, they are likely distinct based on mitochondrial data. In addition, we found genetic structure within the widespread species D. rubicundulus, which comprises three allopatric lineages connected by gene flow upon secondary contact. We also found evidence of population structure and perhaps undescribed diversity in D. elianeae, which warrants further study. The D. rubicundulus subgroup is estimated to have originated in the Late Miocene (∼5.45 million years ago), with diversification continuing through the Pliocene and Early Pleistocene, followed by the most recent divergence of D. rubicundulus lineages in the Middle Pleistocene. The epeirogenic uplift followed by erosion and denudation of the central Brazilian plateau throughout the Pliocene and Pleistocene, in combination with the increasing frequency and amplitude of climatic fluctuations during the Pleistocene, was important for generating and structuring diversity at or below the species level in the D. rubicundulus subgroup.


Assuntos
Anuros , Pradaria , Animais , Filogenia , Filogeografia , Anuros/genética , Brasil , DNA Mitocondrial/genética , Variação Genética
3.
Mol Ecol ; 32(22): 5894-5912, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37203688

RESUMO

Understanding patterns of diversity across macro (e.g. species-level) and micro (e.g. molecular-level) scales can shed light on community function and stability by elucidating the abiotic and biotic drivers of diversity within ecological communities. We examined the relationships among taxonomic and genetic metrics of diversity in freshwater mussels (Bivalvia: Unionidae), an ecologically important and species-rich group in the southeastern United States. Using quantitative community surveys and reduced-representation genome sequencing across 22 sites in seven rivers and two river basins, we surveyed 68 mussel species and sequenced 23 of these species to characterize intrapopulation genetic variation. We tested for the presence of species diversity-abundance correlations (i.e. the more-individuals hypothesis, MIH), species-genetic diversity correlations (SGDCs) and abundance-genetic diversity correlations (AGDCs) across all sites to evaluate relationships between different metrics of diversity. Sites with greater cumulative multispecies density (a standardized metric of abundance) had a greater number of species, consistent with the MIH hypothesis. Intrapopulation genetic diversity was strongly associated with the density of most species, indicating the presence of AGDCs. However, there was no consistent evidence for SGDCs. Although sites with greater overall densities of mussels had greater species richness, sites with higher genetic diversity did not always exhibit positive correlations with species richness, suggesting that there are spatial and evolutionary scales at which the processes influencing community-level diversity and intraspecific diversity differ. Our work reveals the importance of local abundance as indicator (and possibly a driver) of intrapopulation genetic diversity.


Assuntos
Bivalves , Unionidae , Humanos , Animais , Metagenômica , Biodiversidade , Água Doce , Rios , Bivalves/genética , Ecossistema
4.
Heredity (Edinb) ; 128(4): 261-270, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35217806

RESUMO

The Galapagos Archipelago is recognized as a natural laboratory for studying evolutionary processes. San Cristóbal was one of the first islands colonized by tortoises, which radiated from there across the archipelago to inhabit 10 islands. Here, we sequenced the mitochondrial control region from six historical giant tortoises from San Cristóbal (five long deceased individuals found in a cave and one found alive during an expedition in 1906) and discovered that the five from the cave are from a clade that is distinct among known Galapagos giant tortoises but closely related to the species from Española and Pinta Islands. The haplotype of the individual collected alive in 1906 is in the same clade as the haplotype in the contemporary population. To search for traces of a second lineage in the contemporary population on San Cristóbal, we closely examined the population by sequencing the mitochondrial control region for 129 individuals and genotyping 70 of these for both 21 microsatellite loci and >12,000 genome-wide single nucleotide polymorphisms [SNPs]. Only a single mitochondrial haplotype was found, with no evidence to suggest substructure based on the nuclear markers. Given the geographic and temporal proximity of the two deeply divergent mitochondrial lineages in the historical samples, they were likely sympatric, raising the possibility that the lineages coexisted. Without the museum samples, this important discovery of an additional lineage of Galapagos giant tortoise would not have been possible, underscoring the value of such collections and providing insights into the early evolution of this iconic radiation.


Assuntos
Tartarugas , Animais , DNA Mitocondrial/genética , Equador , Genoma , Haplótipos , Humanos , Repetições de Microssatélites , Museus , Filogenia , Tartarugas/genética
5.
PeerJ ; 9: e11947, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34557344

RESUMO

The southern pine beetle, Dendroctonus frontalis, is a native pest of pine trees that has recently expanded its range into the northeastern United States. Understanding its colonization, dispersal, and connectivity will be critical for mitigating negative economic and ecological impacts in the newly invaded areas. Characterization of spatial-genetic structure can contribute to this; however, previous studies have reached different conclusions about regional population genetic structure, with one study reporting a weak east-west pattern, and the most recent reporting an absence of structure. Here we systematically assessed several explanations for the absence of spatial-genetic structure. To do this, we developed nine new microsatellite markers and combined them with an existing 24-locus data matrix for the same individuals. We then reanalyzed this full dataset alongside datasets in which certain loci were omitted with the goal of creating more favorable signal to noise ratios. We also partitioned the data based on the sex of D. frontalis individuals, and then employed a broad suite of genotypic clustering and isolation-by-distance (IBD) analyses. We found that neither inadequate information content in the molecular marker set, nor unfavorable signal-to-noise ratio, nor insensitivity of the analytical approaches could explain the absence of structure. Regardless of dataset composition, there was little evidence for clusters (i.e., distinct geo-genetic groups) or clines (i.e., gradients of increasing allele frequency differences over larger geographic distances), with one exception: significant IBD was repeatedly detected using an individual-based measure of relatedness whenever datasets included males (but not for female-only datasets). This is strongly indicative of broad-scale female-biased dispersal, which has not previously been reported for D. frontalis, in part owing to logistical limitations of direct approaches (e.g., capture-mark-recapture). Weak spatial-genetic structure suggests long-distance connectivity and that gene flow is high, but additional research is needed to understand range expansion and outbreak dynamics in this species using alternate approaches.

6.
Mol Ecol ; 30(23): 6325-6339, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34510620

RESUMO

Whole genome sequencing provides deep insights into the evolutionary history of a species, including patterns of diversity, signals of selection, and historical demography. When applied to closely related taxa with a wealth of background knowledge, population genomics provides a comparative context for interpreting population genetic summary statistics and comparing empirical results with the expectations of population genetic theory. The Galapagos giant tortoises (Chelonoidis spp.), an iconic rapid and recent radiation, offer such an opportunity. Here, we sequenced whole genomes from three individuals of the 12 extant lineages of Galapagos giant tortoise and estimate diversity measures and reconstruct changes in coalescent rate over time. We also compare the number of derived alleles in each lineage to infer how synonymous and nonsynonymous mutation accumulation rates correlate with population size and life history traits. Remarkably, we find that patterns of molecular evolution are similar within individuals of the same lineage, but can differ significantly among lineages, reinforcing the evolutionary distinctiveness of the Galapagos giant tortoise species. Notably, differences in mutation accumulation among lineages do not align with simple population genetic predictions, suggesting that the drivers of purifying selection are more complex than is currently appreciated. By integrating results from earlier population genetic and phylogeographic studies with new findings from the analysis of whole genomes, we provide the most in-depth insights to date on the evolution of Galapagos giant tortoises, and identify discrepancies between expectation from population genetic theory and empirical data that warrant further scrutiny.


Assuntos
Tartarugas , Animais , Evolução Molecular , Genética Populacional , Humanos , Densidade Demográfica , Tartarugas/genética , Sequenciamento Completo do Genoma
7.
Ecol Evol ; 11(11): 6289-6304, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34141218

RESUMO

In landscape genetics, it is largely unknown how choices regarding sampling density and study area size impact inferences upon which habitat features impede vs. facilitate gene flow. While it is recommended that sampling locations be spaced no further apart than the average individual's dispersal distance, for low-mobility species, this could lead to a challenging number of sampling locations, or an unrepresentative study area. We assessed the effects of sampling density and study area size on landscape genetic inferences for a dispersal-limited amphibian, Plethodon mississippi, via analysis of nested datasets. Microsatellite-based genetic distances among individuals were divided into three datasets representing sparse sampling across a large study area, dense sampling across a small study area, or sparse sampling across the same small study area. These datasets were a proxy for gene flow (i.e., the response variable) in maximum-likelihood population effects models that assessed the nature and strength of their relationship with each of five land-use classes (i.e., potential predictor variables). Comparisons of outcomes were based on the rank order of effect, sign of effect (i.e., gene flow resistance vs. facilitation), spatial scale of effect, and functional relationship with gene flow. The best-fit model for each dataset had the same sign of effect for hardwood forests, manmade structures, and pine forests, indicating the impacts of these land-use classes on dispersal and gene flow in P. mississippi are robust to sampling scheme. Contrasting sampling densities led to a different inferred functional relationship between agricultural areas and gene flow. Study area size appeared to influence the scale of effect of manmade structures and the sign of effect of pine forests. Our findings provided evidence for an influence of sampling density, study area size, and sampling effort upon inferences. Accordingly, we recommend iterative subsampling of empirical datasets and continued investigation into the sensitivities of landscape genetic analyses using simulations.

8.
Insects ; 11(3)2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32111104

RESUMO

It has recently come to our attention that two of the environmental rasters we used for analyses inour study [1] were mislabeled in a raster processing pipeline [...].

9.
Insects ; 10(6)2019 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-31167431

RESUMO

The horned passalus (Odontotaenius disjunctus) is one of the most extensively studied saproxylic beetles in the eastern United States. For several decades this species has been the subject of investigations into the behaviors associated with subsociality as well as physiological responses to stress, and, most recently, the composition of its gut microbiome has been closely examined. However, no published study to date has characterized this beetle's broad-scale population genetic structure. Here, we conducted intensive geographic sampling throughout the southern Appalachian Mountains and surrounding areas and then assessed mitochondrial DNA (mtDNA) sequence variation among individuals. Unexpectedly, we discovered two divergent, yet broadly sympatric, mtDNA clades. Indeed, the magnitude of divergence between- vs. within-clades ranged from 5.9 to 7.5×, depending on the dataset under consideration, and members of the two lineages were often syntopic (i.e., found in the same rotting log). Given the potential implications for past and future studies on behavior, physiology, and the gut microbiome, we developed a simple cost-efficient molecular assay (i.e., polymerase chain reaction restriction fragment length polymorphism; PCR-RFLP) to rapidly determine mtDNA clade membership of O. disjunctus individuals. We suggest that the evolutionary processes that gave rise to the emergence and persistence of divergent sympatric lineages reported here warrant investigation, as this type of spatial-genetic pattern appears to be rare among southern Appalachian forest invertebrates.

10.
Ecol Evol ; 9(8): 4621-4636, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31031931

RESUMO

The eastern subterranean termite, Reticulitermes flavipes, currently inhabits previously glaciated regions of the northeastern U.S., as well as the unglaciated southern Appalachian Mountains and surrounding areas. We hypothesized that Pleistocene climatic fluctuations have influenced the distribution of R. flavipes, and thus the evolutionary history of the species. We estimated contemporary and historical geographic distributions of R. flavipes by constructing Species Distribution Models (SDM). We also inferred the evolutionary and demographic history of the species using mitochondrial (cytochrome oxidase I and II) and nuclear (endo-beta-1,4-glucanase) DNA sequence data. To do this, genetic populations were delineated using Bayesian spatial-genetic clustering, competing hypotheses about population divergence were assessed using approximate Bayesian computation (ABC), and changes in population size were estimated using Bayesian skyline plots. SDMs identified areas in the north with suitable habitat during the transition from the Last Interglacial to the Last Glacial Maximum, as well as an expanding distribution from the mid-Holocene to the present. Genetic analyses identified three geographically cohesive populations, corresponding with northern, central, and southern portions of the study region. Based on ABC analyses, divergence between the Northern and Southern populations was the oldest, estimated to have occurred 64.80 thousand years ago (kya), which corresponds with the timing of available habitat in the north. The Central and Northern populations diverged in the mid-Holocene, 8.63 kya, after which the Central population continued to expand. Accordingly, phylogeographic patterns of R. flavipes in the southern Appalachians appear to have been strongly influenced by glacial-interglacial climate change. OPEN RESEARCH BADGES: This article has been awarded Open Materials, Open Data Badges. All materials and data are publicly accessible via the Open Science Framework at https://doi.org/10.5061/dryad.5hr7f31.

11.
Insects ; 10(1)2019 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-30669589

RESUMO

In both managed and unmanaged forests, termites are functionally important members of the dead-wood-associated (saproxylic) insect community. However, little is known about regional-scale environmental drivers of geographic distributions of termite species, and how these environmental factors impact co-occurrence among congeneric species. Here we focus on the southern Appalachian Mountains-a well-known center of endemism for forest biota-and use Ecological Niche Modeling (ENM) to examine the distributions of three species of Reticulitermes termites (i.e., R. flavipes, R. virginicus, and R. malletei). To overcome deficiencies in public databases, ENMs were underpinned by field-collected high-resolution occurrence records coupled with molecular taxonomic species identification. Spatial overlap among areas of predicted occurrence of each species was mapped, and aspects of niche similarity were quantified. We also identified environmental factors that most strongly contribute to among-species differences in occupancy. Overall, we found that R. flavipes and R. virginicus showed significant niche divergence, which was primarily driven by dry-season precipitation. Also, all three species were most likely to co-occur in the mid-latitudes of the study area (i.e., northern Alabama and Georgia, eastern Tennessee and western North Carolina), which is an area of considerable topographic complexity. This work provides important baseline information for follow-up studies of local-scale drivers of these species' distributions. It also identifies specific geographic areas where future assessments of the frequency of true syntopy vs. micro-allopatry, and associated interspecific competitive interactions, should be focused.

12.
Nat Ecol Evol ; 3(1): 87-95, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30510174

RESUMO

Giant tortoises are among the longest-lived vertebrate animals and, as such, provide an excellent model to study traits like longevity and age-related diseases. However, genomic and molecular evolutionary information on giant tortoises is scarce. Here, we describe a global analysis of the genomes of Lonesome George-the iconic last member of Chelonoidis abingdonii-and the Aldabra giant tortoise (Aldabrachelys gigantea). Comparison of these genomes with those of related species, using both unsupervised and supervised analyses, led us to detect lineage-specific variants affecting DNA repair genes, inflammatory mediators and genes related to cancer development. Our study also hints at specific evolutionary strategies linked to increased lifespan, and expands our understanding of the genomic determinants of ageing. These new genome sequences also provide important resources to help the efforts for restoration of giant tortoise populations.


Assuntos
Envelhecimento/genética , Genoma , Tartarugas/genética , Animais , Reparo do DNA/genética , Evolução Molecular , Células HEK293 , Humanos , Mediadores da Inflamação , Masculino , Neoplasias/genética , Filogenia , Densidade Demográfica
13.
Evol Appl ; 11(10): 1811-1821, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30459831

RESUMO

Population genetic theory related to the consequences of rapid population decline is well-developed, but there are very few empirical studies where sampling was conducted before and after a known bottleneck event. Such knowledge is of particular importance for species restoration, given links between genetic diversity and the probability of long-term persistence. To directly evaluate the relationship between current genetic diversity and past demographic events, we collected genome-wide single nucleotide polymorphism data from prebottleneck historical (c.1906) and postbottleneck contemporary (c.2014) samples of Pinzón giant tortoises (Chelonoidis duncanensis; n = 25 and 149 individuals, respectively) endemic to a single island in the Galapagos. Pinzón giant tortoises had a historically large population size that was reduced to just 150-200 individuals in the mid 20th century. Since then, Pinzón's tortoise population has recovered through an ex situ head-start programme in which eggs or pre-emergent individuals were collected from natural nests on the island, reared ex situ in captivity until they were 4-5 years old and subsequently repatriated. We found that the extent and distribution of genetic variation in the historical and contemporary samples were very similar, with the latter group not exhibiting the characteristic genetic patterns of recent population decline. No population structure was detected either spatially or temporally. We estimated an effective population size (N e) of 58 (95% CI = 50-69) for the postbottleneck population; no prebottleneck N e point estimate was attainable (95% CI = 39-infinity) likely due to the sample size being lower than the true N e. Overall, the historical sample provided a valuable benchmark for evaluating the head-start captive breeding programme, revealing high retention of genetic variation and no skew in representation despite the documented bottleneck event. Moreover, this work demonstrates the effectiveness of head-starting in rescuing the Pinzón giant tortoise from almost certain extinction.

14.
Evol Appl ; 11(7): 1084-1093, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30026799

RESUMO

High-throughput DNA sequencing allows efficient discovery of thousands of single nucleotide polymorphisms (SNPs) in nonmodel species. Population genetic theory predicts that this large number of independent markers should provide detailed insights into population structure, even when only a few individuals are sampled. Still, sampling design can have a strong impact on such inferences. Here, we use simulations and empirical SNP data to investigate the impacts of sampling design on estimating genetic differentiation among populations that represent three species of Galápagos giant tortoises (Chelonoidis spp.). Though microsatellite and mitochondrial DNA analyses have supported the distinctiveness of these species, a recent study called into question how well these markers matched with data from genomic SNPs, thereby questioning decades of studies in nonmodel organisms. Using >20,000 genomewide SNPs from 30 individuals from three Galápagos giant tortoise species, we find distinct structure that matches the relationships described by the traditional genetic markers. Furthermore, we confirm that accurate estimates of genetic differentiation in highly structured natural populations can be obtained using thousands of SNPs and 2-5 individuals, or hundreds of SNPs and 10 individuals, but only if the units of analysis are delineated in a way that is consistent with evolutionary history. We show that the lack of structure in the recent SNP-based study was likely due to unnatural grouping of individuals and erroneous genotype filtering. Our study demonstrates that genomic data enable patterns of genetic differentiation among populations to be elucidated even with few samples per population, and underscores the importance of sampling design. These results have specific implications for studies of population structure in endangered species and subsequent management decisions.

15.
J Hered ; 109(6): 631-640, 2018 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-29659893

RESUMO

Empirical population genetic studies generally rely on sampling subsets of the population(s) of interest and of the nuclear or organellar genome targeted, assuming each is representative of the whole. Violations of these assumptions may impact population-level parameter estimation and lead to spurious inferences. Here, we used targeted capture to sequence the full mitochondrial genome from 123 individuals of the Galapagos giant tortoise endemic to Pinzón Island (Chelonoidis duncanensis) sampled at 2 time points pre- and postbottleneck (circa 1906 and 2014) to explicitly assess differences in diversity estimates and demographic reconstructions based on subsets of the mitochondrial genome versus the full sequences and to evaluate potential biases associated with diversity estimates and demographic reconstructions from postbottlenecked samples alone. Haplotypic diversities were equal between the temporal samples based on the full mitochondrial genome, but single gene estimates suggested either decreases or increases in diversity depending upon the region. Demographic reconstructions based on the full sequence were more similar between the temporal samples than those based on the control region alone, or a subset of 3 regions, where the trends in population size changes shifted in magnitude and direction between the temporal samples. In all cases, the estimated coalescent point was more distant for the historical than contemporary sample. In summary, our results empirically demonstrate the influence of sampling bias when interpreting population genetic patterns and punctuate the need for careful consideration of potentially conflicting evolutionary signal across the mitochondrial genome.


Assuntos
Variação Genética , Genoma Mitocondrial , Tartarugas/genética , Animais , DNA Mitocondrial , Equador , Genética Populacional , Viés de Seleção , Análise de Sequência de DNA
17.
Sci Rep ; 7(1): 11471, 2017 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-28904401

RESUMO

Species are being lost at an unprecedented rate due to human-driven environmental changes. The cases in which species declared extinct can be revived are rare. However, here we report that a remote volcano in the Galápagos Islands hosts many giant tortoises with high ancestry from a species previously declared as extinct: Chelonoidis elephantopus or the Floreana tortoise. Of 150 individuals with distinctive morphology sampled from the volcano, genetic analyses revealed that 65 had C. elephantopus ancestry and thirty-two were translocated from the volcano's slopes to a captive breeding center. A genetically informed captive breeding program now being initiated will, over the next decades, return C. elephantopus tortoises to Floreana Island to serve as engineers of the island's ecosystems. Ironically, it was the haphazard translocations by mariners killing tortoises for food centuries ago that created the unique opportunity to revive this "lost" species today.


Assuntos
Efeito Fundador , Variação Genética , Tartarugas/genética , Animais , Cruzamento , Análise por Conglomerados , DNA Mitocondrial , Genótipo , Humanos , Repetições de Microssatélites
18.
PeerJ ; 5: e3127, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28348934

RESUMO

The wood-feeding cockroach Cryptocercus punctulatus Scudder (Blattodea: Cryptocercidae) is an important member of the dead wood (saproxylic) community in montane forests of the southeastern United States. However, its population biology remains poorly understood. Here, aspects of family group co-occurrence were characterized to provide basic information that can be extended by studies on the evolution and maintenance of sub-sociality. Broad sampling across the species' range was coupled with molecular data (mitochondrial DNA (mtDNA) sequences). The primary questions were: (1) what proportion of rotting logs contain two or more different mtDNA haplotypes and how often can this be attributed to multiple families inhabiting the same log, (2) are multi-family logs spatially clustered, and (3) what levels of genetic differentiation among haplotypes exist within a log, and how genetically similar are matrilines of co-occurring family groups? Multi-family logs were identified on the premise that three different mtDNA haplotypes, or two different haplotypes among adult females, is inconsistent with a single family group founded by one male-female pair. Results showed that of the 88 rotting logs from which multiple adult C. punctulatus were sampled, 41 logs (47%) contained two or more mtDNA haplotypes, and at least 19 of these logs (22% overall) were inferred to be inhabited by multiple families. There was no strong evidence for spatial clustering of the latter class of logs. The frequency distribution of nucleotide differences between co-occurring haplotypes was strongly right-skewed, such that most haplotypes were only one or two mutations apart, but more substantial divergences (up to 18 mutations, or 1.6% uncorrected sequence divergence) do occasionally occur within logs. This work represents the first explicit investigation of family group co-occurrence in C. punctulatus, providing a valuable baseline for follow-up studies.

19.
PLoS One ; 10(10): e0138779, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26488886

RESUMO

The taxonomy of giant Galapagos tortoises (Chelonoidis spp.) is currently based primarily on morphological characters and island of origin. Over the last decade, compelling genetic evidence has accumulated for multiple independent evolutionary lineages, spurring the need for taxonomic revision. On the island of Santa Cruz there is currently a single named species, C. porteri. Recent genetic and morphological studies have shown that, within this taxon, there are two evolutionarily and spatially distinct lineages on the western and eastern sectors of the island, known as the Reserva and Cerro Fatal populations, respectively. Analyses of DNA from natural populations and museum specimens, including the type specimen for C. porteri, confirm the genetic distinctiveness of these two lineages and support elevation of the Cerro Fatal tortoises to the rank of species. In this paper, we identify DNA characters that define this new species, and infer evolutionary relationships relative to other species of Galapagos tortoises.


Assuntos
DNA Mitocondrial/genética , Variação Genética/genética , Tartarugas/classificação , Tartarugas/genética , Animais , Sequência de Bases , Evolução Biológica , Genética Populacional , Ilhas , Repetições de Microssatélites , Dados de Sequência Molecular , Filogenia , Homologia de Sequência do Ácido Nucleico , Especificidade da Espécie , Tartarugas/anatomia & histologia
20.
Insects ; 6(2): 524-37, 2015 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-26463202

RESUMO

Reticulitermes termites play key roles in dead wood decomposition and nutrient cycling in forests. They also damage man-made structures, resulting in considerable economic loss. In the eastern United States, five species (R. flavipes, R. virginicus, R. nelsonae, R. hageni and R. malletei) have overlapping ranges and are difficult to distinguish morphologically. Here we present a molecular tool for species identification. It is based on polymerase chain reaction (PCR) amplification of a section of the mitochondrial cytochrome oxidase subunit II gene, followed by a three-enzyme restriction fragment length polymorphism (RFLP) assay, with banding patterns resolved via agarose gel electrophoresis. The assay was designed using a large set of training data obtained from a public DNA sequence database, then evaluated using an independent test panel of Reticulitermes from the Southern Appalachian Mountains, for which species assignments were determined via phylogenetic comparison to reference sequences. After refining the interpretive framework, the PCR-RFLP assay was shown to provide accurate identification of four co-occurring species (the fifth species, R. hageni, was absent from the test panel, so accuracy cannot yet be extended to training data). The assay is cost- and time-efficient, and will help improve knowledge of Reticulitermes species distributions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...