Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 531(7595): 455-6, 2016 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-27008964
2.
Nature ; 512(7513): 181-4, 2014 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-25079322

RESUMO

The origin of the Moon's large-scale topography is important for understanding lunar geology, lunar orbital evolution and the Moon's orientation in the sky. Previous hypotheses for its origin have included late accretion events, large impacts, tidal effects and convection processes. However, testing these hypotheses and quantifying the Moon's topography is complicated by the large basins that have formed since the crust crystallized. Here we estimate the large-scale lunar topography and gravity spherical harmonics outside these basins and show that the bulk of the spherical harmonic degree-2 topography is consistent with a crust-building process controlled by early tidal heating throughout the Moon. The remainder of the degree-2 topography is consistent with a frozen tidal-rotational bulge that formed later, at a semi-major axis of about 32 Earth radii. The probability of the degree-2 shape having both tidal-heating and frozen shape characteristics by chance is less than 1%. We also infer that internal density contrasts eventually reoriented the Moon's polar axis by 36 ± 4°, to the configuration we observe today. Together, these results link the geology of the near and far sides, and resolve long-standing questions about the Moon's large-scale shape, gravity and history of polar wander.

3.
Proc Natl Acad Sci U S A ; 110(21): 8453-8, 2013 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-23650386

RESUMO

The lifetime of the ancient lunar core dynamo has implications for its power source and the mechanism of field generation. Here, we report analyses of two 3.56-Gy-old mare basalts demonstrating that they were magnetized in a stable and surprisingly intense dynamo magnetic field of at least ~13 µT. These data extend the known lifetime of the lunar dynamo by ~160 My and indicate that the field was likely continuously active until well after the final large basin-forming impact. This likely excludes impact-driven changes in rotation rate as the source of the dynamo at this time in lunar history. Rather, our results require a persistent power source like precession of the lunar mantle or a compositional convection dynamo.

4.
Science ; 330(6006): 949-51, 2010 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-21071665

RESUMO

The formation of the lunar farside highlands has long been an open problem in lunar science. We show that much of the topography and crustal thickness in this terrain can be described by a degree-2 harmonic. No other portion of the Moon exhibits comparable degree-2 structure. The quantified structure of the farside highlands unites them with the nearside and suggests a relation between lunar crustal structure, nearside volcanism, and heat-producing elements. The farside topography cannot be explained by a frozen-in tidal bulge. However, the farside crustal thickness and the topography it produces may have been caused by spatial variations in tidal heating when the ancient crust was decoupled from the mantle by a liquid magma ocean, similar to Europa's present ice shell.

5.
Science ; 323(5912): 356-9, 2009 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-19150839

RESUMO

It is uncertain whether the Moon ever formed a metallic core or generated a core dynamo. The lunar crust and returned samples are magnetized, but the source of this magnetization could be meteoroid impacts rather than a dynamo. Here, we report magnetic measurements and 40Ar/39Ar thermochronological calculations for the oldest known unshocked lunar rock, troctolite 76535. These data imply that there was a long-lived field on the Moon of at least 1 microtesla approximately 4.2 billion years ago. The early age, substantial intensity, and long lifetime of this field support the hypothesis of an ancient lunar core dynamo.

6.
J Vestib Res ; 18(1): 25-37, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18776596

RESUMO

Out-of-plane head movements performed during fast rotation produce non-compensatory nystagmus, sensations of illusory motion, and often motion sickness. Adaptation to this cross-coupled Coriolis stimulus has previously been demonstrated for head turns made in the yaw (transverse) plane of motion, during supine head-on-axis rotation. An open question, however, is if adaptation to head movements in one plane of motion transfers to head movements performed in a new, unpracticed plane of motion. Evidence of transfer would imply the brain builds up a generalized model of the vestibular sensory-motor system, instead of learning a variety of individual input/output relations separately. To investigate, over two days 9 subjects performed pitch head turns (sagittal plane) while rotating, before and after a series of yaw head turns while rotating. A Control Group of 10 subjects performed only the pitch movements. The vestibulo-ocular reflex (VOR) and sensations of illusory motion were recorded in the dark for all movements. Upon comparing the two groups we failed to find any evidence of transfer from the yaw plane to the pitch plane, suggesting that adaptation to cross-coupled stimuli is specific to the particular plane of head movement. The findings have applications for the use of centrifugation as a possible countermeasure for long duration spaceflight. Adapting astronauts to unconstrained head movements while rotating will likely require exposure to head movements in all planes and directions.


Assuntos
Adaptação Fisiológica/fisiologia , Movimentos da Cabeça/fisiologia , Ilusões/fisiologia , Enjoo devido ao Movimento/prevenção & controle , Nistagmo Patológico/prevenção & controle , Vestíbulo do Labirinto/fisiologia , Adolescente , Adulto , Análise de Variância , Centrifugação , Feminino , Humanos , Masculino , Movimento (Física) , Enjoo devido ao Movimento/complicações , Nistagmo Patológico/complicações , Valores de Referência , Reflexo Vestíbulo-Ocular/fisiologia , Rotação , Limiar Sensorial/fisiologia , Estatísticas não Paramétricas
7.
Science ; 313(5787): 652-5, 2006 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-16888135

RESUMO

The large differences between the Moon's three principal moments of inertia have been a mystery since Laplace considered them in 1799. Here we present calculations that show how past high-eccentricity orbits can account for the moment differences, represented by the low-order lunar gravity field and libration parameters. One of our solutions is that the Moon may have once been in a 3:2 resonance of orbit period to spin period, similar to Mercury's present state. The possibility of past high-eccentricity orbits suggests a rich dynamical history and may influence our understanding of the early thermal evolution of the Moon.

8.
Science ; 310(5750): 983-5, 2005 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-16284169
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...