Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Fungi (Basel) ; 8(8)2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-36012814

RESUMO

We used molecular data to address species delimitation in a species complex of the parmelioid genus Canoparmelia and compare the pharmacological properties of the two clades identified. We used HPLC_DAD_MS chromatography to identify and quantify the secondary substances and used a concatenated data set of three ribosomal markers to infer phylogenetic relationships. Some historical herbarium specimens were also examined. We found two groups that showed distinct pharmacological properties. The phylogenetic study supported the separation of these two groups as distinct lineages, which are here accepted as distinct species: Canoparmelia caroliniana occurring in temperate to tropical ecosystems of a variety of worldwide localities, including America, Macaronesia, south-west Europe and potentially East Africa, whereas the Kenyan populations represent the second group, for which we propose the new species C. kakamegaensis Garrido-Huéscar, Divakar & Kirika. This study highlights the importance of recognizing cryptic species using molecular data, since it can result in detecting lineages with pharmacological properties previously overlooked.

2.
Aging Cell ; 20(7): e13383, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34092006

RESUMO

Aging is the main risk factor for cardiovascular diseases. In humans, cardiac aging remains poorly characterized. Most studies are based on chronological age (CA) and disregard biological age (BA), the actual physiological age (result of the aging rate on the organ structure and function), thus yielding potentially imperfect outcomes. Deciphering the molecular basis of ventricular aging, especially by BA, could lead to major progresses in cardiac research. We aim to describe the transcriptome dynamics of the aging left ventricle (LV) in humans according to both CA and BA and characterize the contribution of microRNAs, key transcriptional regulators. BA is measured using two CA-associated transcriptional markers: CDKN2A expression, a cell senescence marker, and apparent age (AppAge), a highly complex transcriptional index. Bioinformatics analysis of 132 LV samples shows that CDKN2A expression and AppAge represent transcriptomic changes better than CA. Both BA markers are biologically validated in relation to an aging phenotype associated with heart dysfunction, the amount of cardiac fibrosis. BA-based analyses uncover depleted cardiac-specific processes, among other relevant functions, that are undetected by CA. Twenty BA-related microRNAs are identified, and two of them highly heart-enriched that are present in plasma. We describe a microRNA-gene regulatory network related to cardiac processes that are partially validated in vitro and in LV samples from living donors. We prove the higher sensitivity of BA over CA to explain transcriptomic changes in the aging myocardium and report novel molecular insights into human LV biological aging. Our results can find application in future therapeutic and biomarker research.


Assuntos
Envelhecimento/genética , Biomarcadores/metabolismo , Ventrículos do Coração/metabolismo , MicroRNAs/genética , Feminino , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...