Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
1.
Neurogenetics ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622440

RESUMO

Developmental and epileptic encephalopathy (DEEs) (OMIM#618,328) is characterized by seizures, hypotonia, and brain abnormalities, often arising from mutations in genes crucial for brain function. Among these genes, GLS stands out due to its vital role in the central nervous system (CNS), with homozygous variants potentially causing DEE type 71. Using Whole Exome Sequencing (WES) on a patient exhibiting symptoms of epileptic encephalopathy, we identified a novel homozygous variant, NM_014905.5:c.1849G > T; p.(Asp617Tyr), in the GLS gene. The 5-year-old patient, born to consanguineous parents, presented with developmental delay, encephalopathy, frequent seizures, and hypotonia. Sanger sequencing further validated the GLS gene variant in both the patient and his family. Furthermore, our bioinformatics analysis indicated that this missense variant could lead to alteration of splicing, resulting in the activation of a cryptic donor site and potentially causing loss of protein function. Our finding highlights the pathogenic significance of the GLS gene, particularly in the context of brain disorders, specifically DEE71.

2.
Hum Genomics ; 18(1): 35, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570878

RESUMO

BACKGROUND: To investigate the genetics of early-onset progressive cerebellar ataxia in Iran, we conducted a study at the Children's Medical Center (CMC), the primary referral center for pediatric disorders in the country, over a three-year period from 2019 to 2022. In this report, we provide the initial findings from the national registry. METHODS: We selected all early-onset patients with an autosomal recessive mode of inheritance to assess their phenotype, paraclinical tests, and genotypes. The clinical data encompassed clinical features, the Scale for the Assessment and Rating of Ataxia (SARA) scores, Magnetic Resonance Imaging (MRI) results, Electrodiagnostic exams (EDX), and biomarker features. Our genetic investigations included single-gene testing, Whole Exome Sequencing (WES), and Whole Genome Sequencing (WGS). RESULTS: Our study enrolled 162 patients from various geographic regions of our country. Among our subpopulations, we identified known and novel pathogenic variants in 42 genes in 97 families. The overall genetic diagnostic rate was 59.9%. Notably, we observed PLA2G6, ATM, SACS, and SCA variants in 19, 14, 12, and 10 families, respectively. Remarkably, more than 59% of the cases were attributed to pathogenic variants in these genes. CONCLUSIONS: Iran, being at the crossroad of the Middle East, exhibits a highly diverse genetic etiology for autosomal recessive hereditary ataxia. In light of this heterogeneity, the development of preventive strategies and targeted molecular therapeutics becomes crucial. A national guideline for the diagnosis and management of patients with these conditions could significantly aid in advancing healthcare approaches and improving patient outcomes.


Assuntos
Degenerações Espinocerebelares , Criança , Humanos , Irã (Geográfico)/epidemiologia , Degenerações Espinocerebelares/genética , Testes Genéticos , Fenótipo , Genes Recessivos
3.
DNA Repair (Amst) ; 136: 103633, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38422792

RESUMO

Inherited photosensitivity syndromes are a heterogeneous group of genetic skin disorders with tremendous phenotypic variability, characterized by photosensitivity and defective DNA repair, especially nucleotide excision repair. A cohort of 17 Iranian families with heritable photosensitivity syndromes was evaluated to identify their genetic defect. The patients' DNA was analyzed with either whole-exome sequencing or RNA sequencing (RNA-Seq). The interpretations of the genomic results were guided by genome-wide homozygosity mapping. Haplotype analysis was performed for cases with recurrent mutations. RNA-Seq, in addition to mutation detection, was also utilized to confirm the pathogenicity. Thirteen sequence variants, including six previously unreported pathogenic variants, were disclosed in 17 Iranian families, with XPC as the most common mutated gene in 10 families (59%). In one patient, RNA-Seq, as a first-tier diagnostic approach, revealed a non-canonical homozygous germline variant: XPC:c.413-9 T > A. The Sashimi plot showed skipping of exon 4 with dramatic XPC down-expression. Haplotype analysis of XPC:c.2251-1 G>C and XPC:1243 C>T in four families showed common haplotypes of 1.7 Mb and 2.6 Mb, respectively, denoting a founder effect. Lastly, two extremely rare cases were presented in this report: a homozygous UVSSA:c .1990 C>T was disclosed, and ERCC2-related cerebro-oculo-facio-skeletal (COFS) syndrome with an early childhood death. A direct comparison of our data with the results of previously reported cohorts demonstrates the international mutation landscape of DNA repair-related photosensitivity disorders, although population-specific differences were observed.


Assuntos
Transtornos de Fotossensibilidade , Xeroderma Pigmentoso , Humanos , Pré-Escolar , Consanguinidade , Xeroderma Pigmentoso/genética , Família Estendida , Irã (Geográfico) , Proteínas de Ligação a DNA/genética , Mutação , Reparo do DNA , Transtornos de Fotossensibilidade/genética , Proteína Grupo D do Xeroderma Pigmentoso , Proteínas de Transporte
4.
BMC Bioinformatics ; 25(1): 68, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38350858

RESUMO

BACKGROUND: The advent of Next-Generation Sequencing (NGS) has catalyzed a paradigm shift in medical genetics, enabling the identification of disease-associated variants. However, the vast quantum of data produced by NGS necessitates a robust and dependable mechanism for filtering irrelevant variants. Annotation-based variant filtering, a pivotal step in this process, demands a profound understanding of the case-specific conditions and the relevant annotation instruments. To tackle this complex task, we sought to design an accessible, efficient and more importantly easy to understand variant filtering tool. RESULTS: Our efforts culminated in the creation of 123VCF, a tool capable of processing both compressed and uncompressed Variant Calling Format (VCF) files. Built on a Java framework, the tool employs a disk-streaming real-time filtering algorithm, allowing it to manage sizable variant files on conventional desktop computers. 123VCF filters input variants in accordance with a predefined filter sequence applied to the input variants. Users are provided the flexibility to define various filtering parameters, such as quality, coverage depth, and variant frequency within the populations. Additionally, 123VCF accommodates user-defined filters tailored to specific case requirements, affording users enhanced control over the filtering process. We evaluated the performance of 123VCF by analyzing different types of variant files and comparing its runtimes to the most similar algorithms like BCFtools filter and GATK VariantFiltration. The results indicated that 123VCF performs relatively well. The tool's intuitive interface and potential for reproducibility make it a valuable asset for both researchers and clinicians. CONCLUSION: The 123VCF filtering tool provides an effective, dependable approach for filtering variants in both research and clinical settings. As an open-source tool available at https://project123vcf.sourceforge.io , it is accessible to the global scientific and clinical community, paving the way for the discovery of disease-causing variants and facilitating the advancement of personalized medicine.


Assuntos
Algoritmos , Software , Reprodutibilidade dos Testes , Sequenciamento de Nucleotídeos em Larga Escala
5.
BMC Infect Dis ; 24(1): 182, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38342922

RESUMO

BACKGROUND: The human papillomavirus (HPV) infection may affect the miRNA expression pattern during cervical cancer (CC) development. To demonstrate the association between high-risk HPVs and the development of cervix dysplasia, we examined the expression patterns of hsa-miR-194-5p and hsa-miR-195-5p in Pap smear samples from southeast Iranian women. We compared samples that were HPV-positive but showed no abnormality in the cytological examination to samples that were HPV-positive and had severe dysplasia. METHODS: Pap smear samples were obtained from 60 HPV-positive (HPV-16/18) patients with histologically confirmed severe dysplasia (cervical intra-epithelial neoplasia (CIN 3) or carcinoma in situ) and the normal cytology group. The expression of hsa-miR-194-5p and hsa-miR-195-5p was analyzed by real-time quantitative PCR, using specific stem-loop primers and U6 snRNA as the internal reference gene. Clinicopathological features were associated with miRNA expression levels. Furthermore, functional enrichment analysis was conducted using in silico tools. The Kaplan-Meier survival method was also obtained to discriminate survival-significant candidate miRNAs in CC, and receiver operating characteristic (ROC) curves were constructed to assess the diagnostic value. RESULTS: Compared to HPV-positive cytologically normal Pap smear samples, hsa-miR-194-5p and hsa-miR-195-5p relative expression decreased significantly in HPV-positive patients with a severe dysplasia Pap smear. Kaplan-Meier analysis indicated a significant association between the miR-194 decrease and poor CC survival. In essence, ROC curve analysis showed that miR-194-5p and miR-195-5p could serve as valuable markers for the development of cervix dysplasia in individuals who are positive for high-risk HPVs. CONCLUSIONS: This study revealed that hsa-miR-194-5p and hsa-miR-195-5p may possess tumor suppressor capabilities in the context of cervical dysplasia progression. However, it remains uncertain whether these microRNAs are implicated in the transition of patients with high dysplasia to cervical cancer. We also showed the potential capability of candidate miRNAs as novel diagnostic biomarkers related to cervical dysplasia progression.


Assuntos
MicroRNAs , Infecções por Papillomavirus , Displasia do Colo do Útero , Neoplasias do Colo do Útero , Humanos , Feminino , Neoplasias do Colo do Útero/diagnóstico , Teste de Papanicolaou , Papillomavirus Humano 16/genética , Citologia , Irã (Geográfico) , Papillomavirus Humano 18/genética , MicroRNAs/genética
6.
Brain ; 147(4): 1436-1456, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37951597

RESUMO

The acyl-CoA-binding domain-containing protein 6 (ACBD6) is ubiquitously expressed, plays a role in the acylation of lipids and proteins and regulates the N-myristoylation of proteins via N-myristoyltransferase enzymes (NMTs). However, its precise function in cells is still unclear, as is the consequence of ACBD6 defects on human pathophysiology. Using exome sequencing and extensive international data sharing efforts, we identified 45 affected individuals from 28 unrelated families (consanguinity 93%) with bi-allelic pathogenic, predominantly loss-of-function (18/20) variants in ACBD6. We generated zebrafish and Xenopus tropicalis acbd6 knockouts by CRISPR/Cas9 and characterized the role of ACBD6 on protein N-myristoylation with myristic acid alkyne (YnMyr) chemical proteomics in the model organisms and human cells, with the latter also being subjected further to ACBD6 peroxisomal localization studies. The affected individuals (23 males and 22 females), aged 1-50 years, typically present with a complex and progressive disease involving moderate-to-severe global developmental delay/intellectual disability (100%) with significant expressive language impairment (98%), movement disorders (97%), facial dysmorphism (95%) and mild cerebellar ataxia (85%) associated with gait impairment (94%), limb spasticity/hypertonia (76%), oculomotor (71%) and behavioural abnormalities (65%), overweight (59%), microcephaly (39%) and epilepsy (33%). The most conspicuous and common movement disorder was dystonia (94%), frequently leading to early-onset progressive postural deformities (97%), limb dystonia (55%) and cervical dystonia (31%). A jerky tremor in the upper limbs (63%), a mild head tremor (59%), parkinsonism/hypokinesia developing with advancing age (32%) and simple motor and vocal tics were among other frequent movement disorders. Midline brain malformations including corpus callosum abnormalities (70%), hypoplasia/agenesis of the anterior commissure (66%), short midbrain and small inferior cerebellar vermis (38% each) as well as hypertrophy of the clava (24%) were common neuroimaging findings. Acbd6-deficient zebrafish and Xenopus models effectively recapitulated many clinical phenotypes reported in patients including movement disorders, progressive neuromotor impairment, seizures, microcephaly, craniofacial dysmorphism and midbrain defects accompanied by developmental delay with increased mortality over time. Unlike ACBD5, ACBD6 did not show a peroxisomal localization and ACBD6-deficiency was not associated with altered peroxisomal parameters in patient fibroblasts. Significant differences in YnMyr-labelling were observed for 68 co- and 18 post-translationally N-myristoylated proteins in patient-derived fibroblasts. N-myristoylation was similarly affected in acbd6-deficient zebrafish and X. tropicalis models, including Fus, Marcks and Chchd-related proteins implicated in neurological diseases. The present study provides evidence that bi-allelic pathogenic variants in ACBD6 lead to a distinct neurodevelopmental syndrome accompanied by complex and progressive cognitive and movement disorders.


Assuntos
Deficiência Intelectual , Microcefalia , Transtornos dos Movimentos , Malformações do Sistema Nervoso , Transtornos do Neurodesenvolvimento , Animais , Feminino , Humanos , Masculino , Transportadores de Cassetes de Ligação de ATP , Deficiência Intelectual/genética , Transtornos dos Movimentos/genética , Malformações do Sistema Nervoso/genética , Transtornos do Neurodesenvolvimento/genética , Tremor , Peixe-Zebra , Lactente , Pré-Escolar , Criança , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade
7.
Ir J Med Sci ; 193(1): 449-456, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37523070

RESUMO

BACKGROUND: Aminoacylase-1 deficiency (ACY1D) is an autosomal recessive rare inborn error of metabolism, which is caused by disease-causing variants in the ACY1. This disorder is characterized by increased urinary excretion of specific N-acetyl amino acids. Affected individuals demonstrate heterogeneous clinical manifestations which are primarily neurologic problems. In neuroimaging, corpus callosum hypoplasia, cerebellar vermis atrophy, and delayed myelination of cerebral white matter have been reported. AIMS: Finding disease-causing variant and expanding imaging findings in a patient with persistent basal ganglia involvement. METHODS: Whole-exome sequencing was performed in order to identify disease-causing variants in an affected 5-year-old male patient who presented with neurologic regression superimposed on neurodevelopmental delay following a febrile illness. He had inability to walk, cognitive impairment, speech delay, febrile-induced seizures, truncal hypotonia, moderate to severe generalized dystonia, and recurrent metabolic decompensation. RESULTS: All metabolic tests were normal except for a moderate metabolic acidosis following febrile illnesses. The results of serial brain magnetic resonance imaging (MRI) at ages 1 and 4.5 years revealed persistent bilateral and symmetric abnormal signals in basal ganglia mainly caudate and globus pallidus nuclei with progression over time in addition to a mild supratentorial atrophy. A homozygous missense variant [NM_000666.3: c.1057C>T; p.(Arg353Cys)] was identified in the ACY1, consistent with aminoacylase-1 deficiency. Variant confirmation in patient and segregation analysis in his family were performed using Sanger sequencing. CONCLUSIONS: Our findings expanded the phenotype spectrum of ACY1-related neurodegeneration by demonstrating persistent basal ganglia involvement and moderate to severe generalized dystonia.


Assuntos
Amidoidrolases/deficiência , Erros Inatos do Metabolismo dos Aminoácidos , Distonia , Masculino , Humanos , Pré-Escolar , Distonia/metabolismo , Distonia/patologia , Mutação , Gânglios da Base/metabolismo , Gânglios da Base/patologia , Atrofia/metabolismo , Atrofia/patologia , Imageamento por Ressonância Magnética
8.
Brain Dev ; 46(4): 167-179, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38129218

RESUMO

OBJECTIVE: Mitochondrial leukodystrophies (MLs) are mainly caused by impairments of the mitochondrial respiratory chains. This study reports the mutation and phenotypic spectrum of a cohort of 41 pediatric patients from 39 distinct families with MLs among 320 patients with a molecular diagnosis of leukodystrophies. METHODS: This study summarizes the clinical, imaging, and molecular data of these patients for five years. RESULTS: The three most common symptoms were neurologic regression (58.5%), pyramidal signs (58.5%), and extrapyramidal signs (43.9%). Because nuclear DNA mutations are responsible for a high percentage of pediatric MLs, whole exome sequencing was performed on all patients. In total, 39 homozygous variants were detected. Additionally, two previously reported mtDNA variants were identified with different levels of heteroplasmy in two patients. Among 41 mutant alleles, 33 (80.4%) were missense, 4 (9.8%) were frameshift (including 3 deletions and one duplication), and 4 (9.8%) were splicing mutations. Oxidative phosphorylation in 27 cases (65.8%) and mtDNA maintenance pathways in 8 patients (19.5%) were the most commonly affected mitochondrial pathways. In total, 5 novel variants in PDSS1, NDUFB9, FXBL4, SURF1, and NDUSF1 were also detected. In silico analyses showed how each novel variant may contribute to ML pathogenesis. CONCLUSIONS: The findings of this study suggest whole-exome sequencing as a strong diagnostic genetic tool to identify the causative variants in pediatric MLs. In comparison between oxidative phosphorylation (OXPHOS) and mtDNA maintenance groups, brain stem and periaqueductal gray matter (PAGM) involvement were more commonly seen in OXPHOS group (P value of 0.002 and 0.009, respectively), and thinning of corpus callosum was observed more frequently in mtDNA maintenance group (P value of 0.042).


Assuntos
DNA Mitocondrial , Mitocôndrias , Criança , Humanos , DNA Mitocondrial/genética , Mutação/genética , Corpo Caloso
9.
J Clin Lab Anal ; 37(21-22): e24983, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37950505

RESUMO

BACKGROUND: NARS2 encodes mitochondrial Asparaginyl-tRNA Synthetase 2, which catalyzes the aminoacylation of tRNA-Asn in the mitochondria. To date, 24 variants have been reported in NARS2 gene in 35 patients. The phenotypic variability of NARS2-associated disorder is broad, ranging from neurodevelopmental disorders to hearing loss. In this study, we report some novel imaging findings in an Iranian patient suffering from epileptic encephalopathy, caused by a previously reported variant, c.500A > G; p.(His167Arg), in NARS2. METHODS: The spectrum of clinical manifestations of two Iranian patients was investigated and genetic analysis was performed by Whole-exome sequencing (WES). Additionally, we also reviewed the literature and summarized the phenotypes of previously reported patients with variants in the NARS2 gene. RESULTS: Here, we present the phenotypic and genetic features of 2 unrelated Iranian infants presented with neurodevelopmental delay, seizures, hearing impairment, feeding problems, elevated serum lactate levels in addition to subdural hematoma and cerebral parenchymal hemorrhage in the brain magnetic resonance imaging (MRI) of one of the patients. Genetic analysis revealed a biallelic missense variant in NARS2: c.500A > G; p.(His167Arg). We described the subdural hematoma and cerebral parenchymal hemorrhage of the brain for the first time. CONCLUSIONS: Our study provides new clinical findings, subdural hematoma, and parenchymal hemorrhage, in NARS2-related disorders. Our findings along with previous studies provide more evidence of the clinical presentation of the disease caused by pathogenic variants in NARS2. Expanding the clinical spectrum increases the diagnostic rate of molecular testing and improves the quality of counseling for at-risk couples.


Assuntos
Aspartato-tRNA Ligase , Encéfalo , Lactente , Humanos , Irã (Geográfico) , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Hematoma Subdural/complicações , Hematoma Subdural/patologia , Fenótipo , Hemorragia Cerebral , Aspartato-tRNA Ligase/genética
10.
BMC Med Genomics ; 16(1): 235, 2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37803361

RESUMO

BACKGROUND: Mutations in ABHD12 (OMIM: 613,599) are associated with polyneuropathy, hearing loss, ataxia, retinitis pigmentosa, and cataract (PHARC) syndrome (OMIM: 612674), which is a rare autosomal recessive neurodegenerative disease. PHARC syndrome is easily misdiagnosed as other neurologic disorders, such as retinitis pigmentosa, Charcot-Marie-Tooth disease, and Refsum disease, due to phenotype variability and slow progression. This paper presents a novel mutation in ABHD12 in two affected siblings with PHARC syndrome phenotypes. In addition, we summarize genotype-phenotype information of the previously reported patients with ABHD12 mutation. METHODS: Following a thorough medical evaluation, whole-exome sequencing was done on the proband to look for potential genetic causes. This was followed by confirmation of identified variant in the proband and segregation analysis in the family by Sanger sequencing. The variants were interpreted based on the American College of Medical Genetics and Genomics (ACMG) guidelines. RESULTS: A novel pathogenic homozygous frameshift variant, NM_001042472.3:c.601dup, p.(Val201GlyfsTer4), was identified in exon 6 of ABHD12 (ACMG criteria: PVS1 and PM2, PM1, PM4, PP3, and PP4). Through Sanger sequencing, we showed that this variant is co-segregated with the disease in the family. Further medical evaluations confirmed the compatibility of the patients' phenotype with PHARC syndrome. CONCLUSIONS: Our findings expand the spectrum of mutations in the ABHD12 and emphasize the significance of multidisciplinary diagnostic collaboration among clinicians and geneticists to solve the differential diagnosis of related disorders. Moreover, a summary based on mutations found so far in the ABHD12 gene did not suggest a clear genotype-phenotype correlation for PHARC syndrome.


Assuntos
Doenças Neurodegenerativas , Retinose Pigmentar , Humanos , Mutação da Fase de Leitura , Retinose Pigmentar/genética , Mutação , Fenótipo , Linhagem , Monoacilglicerol Lipases/genética
11.
Clin Case Rep ; 11(10): e8062, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37881193

RESUMO

Congenital myasthenic syndromes-5 (CMS5) is a rare autosomal recessive heterogeneous disorder, caused by pathogenic variants in the COLQ that lead to skeletal muscle weakness and abnormal fatigability. The onset is usually from birth to childhood. Disease-causing variants in the collagen-like tail subunit are the most explained etiology in synaptic CMS, causing defected acetylcholinesterase. In this study whole-exome sequencing (WES) was performed in an affected boy with muscle weakness, ophthalmoplegia, and bilateral ptosis and gene expression assay by qRT-PCR was performed in entire family. A homozygous nonsense variant in the COLQ [NM_005677.4:c.679C>T], (p.Arg227Ter) was identified in the proband. Segregation analysis by Sanger sequencing confirmed the homozygous state in the proband and heterozygous state in his parents and four of the siblings. The mRNA expression level in the proband was 0.02 of a healthy person, and in the carriers were 0.42 of a healthy person. This study presents an Iranian family with two affected children and eight symptomatic carriers with attenuated mRNA expression. This study provides evidence that carriers of the COLQ disease-causing variants could become symptomatic with some yet unknown pathogenesis mechanism and underscore the importance of further investigations to elucidate this mechanism.

12.
BMC Med Genomics ; 16(1): 226, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37752557

RESUMO

BACKGROUND: Pathogenic variants in the ATCAY gene are associated with a rare autosomal recessive disorder called Cayman cerebellar ataxia. Affected individuals display psychomotor retardation, cerebellar dysfunction, nystagmus, intention tremor, ataxic gait and dysarthric in some cases. CASE PRESENTATION: Whole exome sequencing was performed for a 21-month-old girl suffering from developmental delay specifically in motor and language aspects, hypotonia, nystagmus, pes planus and strabismus. The detected variant in the patient was confirmed by family segregation analysis by Sanger sequencing in both of her parents. Previously three homozygous variants in the ATCAY gene (missense, splice site and frameshift deletion) have been reported in patients with Cayman cerebellar ataxia. Here we report the fourth homozygous variant and the second homozygous frameshift deletion in this gene to be associated with autosomal recessive Cayman cerebellar ataxia. CONCLUSION: The identification of this novel homozygous frameshift deletion in the ATCAY gene expands our understanding of the genetic landscape underlying Cayman cerebellar ataxia. Furthermore, the occurrence of this variant in Iran, in addition to Pakistan, signifies the importance of considering genotypic and phenotypic factors beyond ethnicity when studying this disorder. These findings contribute to the ongoing efforts to unravel the molecular basis of Cayman cerebellar ataxia and improve diagnostic approaches and potential therapeutic interventions.


Assuntos
Jacarés e Crocodilos , Ataxia Cerebelar , Humanos , Feminino , Animais , Lactente , Ataxia Cerebelar/diagnóstico por imagem , Ataxia Cerebelar/genética , Irã (Geográfico) , Jacarés e Crocodilos/genética , Neuroimagem , Linhagem
14.
Neurogenetics ; 24(4): 279-289, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37597066

RESUMO

Leukodystrophies (LDs) are a heterogeneous group of progressive neurological disorders and characterized by primary involvement of white matter of the central nervous system (CNS). This is the first report of the Iranian LD Registry database to describe the clinical, radiological, and genomic data of Persian patients with leukodystrophies. From 2016 to 2019, patients suspicious of LDs were examined followed by a brain magnetic resonance imaging (MRI). A single gene testing or whole-exome sequencing (WES) was used depending on the neuroradiologic phenotypes. In a few cases, the diagnosis was made by metabolic studies. Based on the MRI pattern, diagnosed patients were divided into cohorts A (hypomyelinating LDs) versus cohort B (Other LDs). The most recent LD classification was utilized for classification of diagnosed patients. For novel variants, in silico analyses were performed to verify their pathogenicity. Out of 680 registered patients, 342 completed the diagnostic evaluations. In total, 245 patients met a diagnosis which in turn 24.5% were categorized in cohort A and the remaining in cohort B. Genetic tests revealed causal variants in 228 patients consisting of 213 variants in 110 genes with 78 novel variants. WES and single gene testing identified a causal variant in 65.5% and 34.5% cases, respectively. The total diagnostic rate of WES was 60.7%. Lysosomal disorders (27.3%; GM2-gangliosidosis-9.8%, MLD-6.1%, KD-4.5%), amino and organic acid disorders (17.15%; Canavan disease-4.5%, L-2-HGA-3.6%), mitochondrial leukodystrophies (12.6%), ion and water homeostasis disorders (7.3%; MLC-4.5%), peroxisomal disorders (6.5%; X-ALD-3.6%), and myelin protein disorders (3.6%; PMLD-3.6%) were the most commonly diagnosed disorders. Thirty-seven percent of cases had a pathogenic variant in nine genes (ARSA, HEXA, ASPA, MLC1, GALC, GJC2, ABCD1, L2HGDH, GCDH). This study highlights the most common types as well as the genetic heterogeneity of LDs in Iranian children.


Assuntos
Doenças Desmielinizantes , Doenças Neurodegenerativas , Humanos , Criança , Irã (Geográfico) , Heterogeneidade Genética , Imageamento por Ressonância Magnética , Encéfalo , Oxirredutases do Álcool
15.
Orphanet J Rare Dis ; 18(1): 177, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37403138

RESUMO

BACKGROUND: Phospholipase-associated neurodegeneration (PLAN) caused by mutations in the PLA2G6 gene is a rare neurodegenerative disorder that presents with four sub-groups. Infantile neuroaxonal dystrophy (INAD) and PLA2G6-related dystonia-parkinsonism are the main two subtypes. In this cohort, we reviewed clinical, imaging, and genetic features of 25 adult and pediatric patients harboring variants in the PLA2G6. METHODS: An extensive review of the patients' data was carried out. Infantile Neuroaxonal Dystrophy Rating Scale (INAD-RS) was used for evaluating the severity and progression of INAD patients. Whole-exome sequencing was used to determine the disease's underlying etiology followed by co-segregation analysis using Sanger sequencing. In silico prediction analysis based on the ACMG recommendation was used to assess the pathogenicity of genetic variants. We aimed to survey a genotype-genotype correlation in PLA2G6 considering all reported disease-causing variants in addition to our patients using the HGMD database and the chi-square statistical approach. RESULTS: Eighteen cases of INAD and 7 cases of late-onset PLAN were enrolled. Among 18 patients with INAD, gross motor regression was the most common presenting symptom. Considering the INAD-RS total score, the mean rate of progression was 0.58 points per month of symptoms (Standard error 0.22, lower 95% - 1.10, and upper 95% - 0.15). Sixty percent of the maximum potential loss in the INAD-RS had occurred within 60 months of symptom onset in INAD patients. Among seven adult cases of PLAN, hypokinesia, tremor, ataxic gate, and cognitive impairment were the most frequent clinical features. Various brain imaging abnormalities were also observed in 26 imaging series of these patients with cerebellar atrophy being the most common finding in more than 50%. Twenty unique variants in 25 patients with PLAN were detected including nine novel variants. Altogether, 107 distinct disease-causing variants from 87 patient were analyzed to establish a genotype-phenotype correlation. The P value of the chi-square test did not indicate a significant relationship between age of disease onset and the distribution of reported variants on PLA2G6. CONCLUSION: PLAN presents with a wide spectrum of clinical symptoms from infancy to adulthood. PLAN should be considered in adult patients with parkinsonism or cognition decline. Based on the current knowledge, it is not possible to foresee the age of disease onset based on the identified genotype.


Assuntos
Distrofias Neuroaxonais , Transtornos Parkinsonianos , Adulto , Criança , Humanos , Genótipo , Fosfolipases A2 do Grupo VI/genética , Mutação/genética , Distrofias Neuroaxonais/genética , Transtornos Parkinsonianos/genética , Fenótipo
16.
BMC Endocr Disord ; 23(1): 155, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37474955

RESUMO

BACKGROUND: Human growth hormone (hGH) plays a crucial role in growth by binding to growth hormone receptor (GHR) in target cells. Binding of GH molecules to their cognate receptors triggers downstream signaling pathways leading to the transcription of several genes, including insulin-like growth factor (IGF)-1. Pathogenic variants in the GHR gene can result in structural and functional defects in the GHR protein, leading to Laron Syndrome (LS) with the primary clinical manifestation of short stature. So far, around 100 GHR variants have been reported, mostly biallelic, as causing LS. CASE PRESENTATION: We report on three siblings from an Iranian consanguineous family who presented with dwarfism. Whole-exome sequencing (WES) was performed on the proband, revealing a novel homozygous missense variant in the GHR gene (NM_000163.5; c.610 T > A, p.(Trp204Arg)) classified as a likely pathogenic variant according to the recommendation of the American College of Medical Genetics (ACMG). Co-segregation analysis was investigated using Sanger sequencing. CONCLUSIONS: To date, approximately 400-500 LS cases with GHR biallelic variants, out of them 10 patients originating from Iran, have been described in the literature. Given the high rate of consanguineous marriages in the Iranian population, the frequency of LS is expected to be higher, which might be explained by undiagnosed cases. Early diagnosis of LS is very important, as treatment is available for this condition.


Assuntos
Nanismo , Hormônio do Crescimento Humano , Síndrome de Laron , Humanos , Receptores da Somatotropina/genética , Receptores da Somatotropina/metabolismo , Síndrome de Laron/genética , Síndrome de Laron/tratamento farmacológico , Irã (Geográfico) , Consanguinidade , Linhagem , Nanismo/genética , Fator de Crescimento Insulin-Like I/metabolismo
18.
Cancer Cell Int ; 23(1): 99, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37217995

RESUMO

Neurofibromatosis type 2 (NF2) is a genetic condition marked by the development of multiple benign tumors in the nervous system. The most common tumors associated with NF2 are bilateral vestibular schwannoma, meningioma, and ependymoma. The clinical manifestations of NF2 depend on the site of involvement. Vestibular schwannoma can present with hearing loss, dizziness, and tinnitus, while spinal tumor leads to debilitating pain, muscle weakness, or paresthesias. Clinical diagnosis of NF2 is based on the Manchester criteria, which have been updated in the last decade. NF2 is caused by loss-of-function mutations in the NF2 gene on chromosome 22, leading the merlin protein to malfunction. Over half of NF2 patients have de novo mutations, and half of this group are mosaic. NF2 can be managed by surgery, stereotactic radiosurgery, monoclonal antibody bevacizumab, and close observation. However, the nature of multiple tumors and the necessity of multiple surgeries over the lifetime, inoperable tumors like meningiomatosis with infiltration of the sinus or in the area of the lower cranial nerves, the complications caused by the operation, the malignancies induced by radiotherapy, and inefficiency of cytotoxic chemotherapy due to the benign nature of NF-related tumors have led a march toward exploring targeted therapies. Recent advances in genetics and molecular biology have allowed identifying and targeting of underlying pathways in the pathogenesis of NF2. In this review, we explain the clinicopathological characteristics of NF2, its genetic and molecular background, and the current knowledge and challenges of implementing genetics to develop efficient therapies.

19.
Eur J Clin Invest ; 53(4): e13946, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36576366

RESUMO

BACKGROUND: DNA-directed RNA polymerase II subunit 3 (RPB3) is the third largest subunit of RNA polymerase II and is encoded by the POLR2C (OMIM:180663). A large Iranian family with congenital hearing loss and infertility is described here with genetic and clinical characterizations of five male patients. METHODS: After doing clinical examinations, the proband was subjected to karyotyping and GJB2/6 sequencing to rule out the most evident chromosomal and gene abnormalities for male infertility and hearing loss, respectively. A custom-designed next-generation sequencing panel was also used to detect mutations in deafness-related genes. Finally, to reveal the underlying molecular cause(s) justifying hearing loss and male infertility, five male patients and 2 healthy male controls within the family were subjected to paired-end whole-exome sequencing (WES). Linkage analysis was also performed based on the data. RESULTS: All male patients showed prelingual sensorineural hearing loss and also decreased sperm motility. Linkage analysis determined 16q21 as the most susceptible locus in which a missense variant in exon 7 of POLR2C-NM_032940.3:c.545T>C;p.(Val182Ala)-was identified as a 'likely pathogenic' variant co-segregated with phenotypes. CONCLUSIONS: Using segregation and in silico analyses, for the first time, we suggested that the NM_032940.3:c.545T>C; p.(Val182Ala) in POLR2C is associated with hearing loss and male infertility.


Assuntos
Surdez , Perda Auditiva Neurossensorial , Perda Auditiva , Infertilidade Masculina , Humanos , Masculino , Irã (Geográfico) , Motilidade dos Espermatozoides , Perda Auditiva Neurossensorial/diagnóstico , Perda Auditiva Neurossensorial/genética , Surdez/genética , Perda Auditiva/genética , Mutação , Linhagem
20.
Eur J Med Genet ; 66(1): 104658, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36494063

RESUMO

Hearing Loss (HL) is one of the most prevalent congenital diseases in humans and is etiologically highly heterogeneous. To date, over 360 genes have been identified that are involved in mouse or human deafness. SPNS2 is one of these genes that has been attributed to deafness in recent years. In this study, we identified two novel damaging variants of c.906G>A; p.(Trp302*) and c.487G>A; p.(Asp163Asn) in the SPNS2 gene in an eight-year-old female with bilateral sensorineural hearing loss who also presents with congenital hypothyroidism and coronary heart disease. Sanger sequencing confirmed that the variants are compound heterozygote. In addition, in silico analysis by various tools predicted that these variants are damaging. To date, these detected variants have not been reported in any of the existing public databases. We hope that identification of more variants in SPNS2 provide new insights into its role in deafness.


Assuntos
Surdez , Perda Auditiva Neurossensorial , Perda Auditiva , Feminino , Humanos , Animais , Camundongos , Criança , Surdez/genética , Mutação , Linhagem , Perda Auditiva Neurossensorial/genética , Perda Auditiva/genética , Heterozigoto , Proteínas de Transporte de Ânions/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...