Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
BMC Public Health ; 21(1): 2049, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34753437

RESUMO

BACKGROUND: Deaths due to vaccine preventable diseases cause a notable proportion of mortality worldwide. To quantify the importance of vaccination, it is necessary to estimate the burden averted through vaccination. The Vaccine Impact Modelling Consortium (VIMC) was established to estimate the health impact of vaccination. METHODS: We describe the methods implemented by the VIMC to estimate impact by calendar year, birth year and year of vaccination (YoV). The calendar and birth year methods estimate impact in a particular year and over the lifetime of a particular birth cohort, respectively. The YoV method estimates the impact of a particular year's vaccination activities through the use of impact ratios which have no stratification and stratification by activity type and/or birth cohort. Furthermore, we detail an impact extrapolation (IE) method for use between coverage scenarios. We compare the methods, focusing on YoV for hepatitis B, measles and yellow fever. RESULTS: We find that the YoV methods estimate similar impact with routine vaccinations but have greater yearly variation when campaigns occur with the birth cohort stratification. The IE performs well for the YoV methods, providing a time-efficient mechanism for updates to impact estimates. CONCLUSIONS: These methods provide a robust set of approaches to quantify vaccination impact; however it is vital that the area of impact estimation continues to develop in order to capture the full effect of immunisation.


Assuntos
Sarampo , Febre Amarela , Coorte de Nascimento , Humanos , Sarampo/epidemiologia , Sarampo/prevenção & controle , Saúde Pública , Vacinação
2.
Nat Commun ; 12(1): 3647, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34131128

RESUMO

Yellow fever virus (YFV) is a zoonotic arbovirus affecting both humans and non-human primates (NHP's) in Africa and South America. Previous descriptions of YF's seasonality have relied purely on climatic explanations, despite the high proportion of cases occurring in people involved in agriculture. We use a series of random forest classification models to predict the monthly occurrence of YF in humans and NHP's across Brazil, by fitting four classes of covariates related to the seasonality of climate and agriculture (planting and harvesting), crop output and host demography. We find that models captured seasonal YF reporting in humans and NHPs when they considered seasonality of agriculture rather than climate, particularly for monthly aggregated reports. These findings illustrate the seasonality of exposure, through agriculture, as a component of zoonotic spillover. Additionally, by highlighting crop types and anthropogenic seasonality, these results could directly identify areas at highest risk of zoonotic spillover.


Assuntos
Agricultura , Surtos de Doenças , Estações do Ano , Febre Amarela/epidemiologia , Animais , Brasil/epidemiologia , Clima , Florestas , Humanos , Primatas , Vírus da Febre Amarela , Zoonoses
3.
Elife ; 102021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33722340

RESUMO

Yellow fever (YF) is a viral, vector-borne, haemorrhagic fever endemic in tropical regions of Africa and South America. The vaccine for YF is considered safe and effective, but intervention strategies need to be optimised; one of the tools for this is mathematical modelling. We refine and expand an existing modelling framework for Africa to account for transmission in South America. We fit to YF occurrence and serology data. We then estimate the subnational forces of infection for the entire endemic region. Finally, using demographic and vaccination data, we examine the impact of vaccination activities. We estimate that there were 109,000 (95% credible interval [CrI] [67,000-173,000]) severe infections and 51,000 (95% CrI [31,000-82,000]) deaths due to YF in Africa and South America in 2018. We find that mass vaccination activities in Africa reduced deaths by 47% (95% CrI [10%-77%]). This methodology allows us to evaluate the effectiveness of vaccination and illustrates the need for continued vigilance and surveillance of YF.


Assuntos
Carga Global da Doença , Febre Amarela/epidemiologia , África/epidemiologia , Surtos de Doenças , Saúde Global , Humanos , Vacinação em Massa/estatística & dados numéricos , Modelos Teóricos , Estudos Soroepidemiológicos , América do Sul/epidemiologia , Inquéritos e Questionários , Vacinação/métodos , Febre Amarela/prevenção & controle , Febre Amarela/transmissão , Vacina contra Febre Amarela/uso terapêutico
4.
PLoS Med ; 18(2): e1003523, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33600451

RESUMO

BACKGROUND: The Eliminate Yellow fever Epidemics (EYE) strategy was launched in 2017 in response to the resurgence of yellow fever in Africa and the Americas. The strategy relies on several vaccination activities, including preventive mass vaccination campaigns (PMVCs). However, to what extent PMVCs are associated with a decreased risk of outbreak has not yet been quantified. METHODS AND FINDINGS: We used the self-controlled case series (SCCS) method to assess the association between the occurrence of yellow fever outbreaks and the implementation of PMVCs at the province level in the African endemic region. As all time-invariant confounders are implicitly controlled for in the SCCS method, this method is an alternative to classical cohort or case-control study designs when the risk of residual confounding is high, in particular confounding by indication. The locations and dates of outbreaks were identified from international epidemiological records, and information on PMVCs was provided by coordinators of vaccination activities and international funders. The study sample consisted of provinces that were both affected by an outbreak and targeted for a PMVC between 2005 and 2018. We compared the incidence of outbreaks before and after the implementation of a PMVC. The sensitivity of our estimates to a range of assumptions was explored, and the results of the SCCS method were compared to those obtained through a retrospective cohort study design. We further derived the number of yellow fever outbreaks that have been prevented by PMVCs. The study sample consisted of 33 provinces from 11 African countries. Among these, the first outbreak occurred during the pre-PMVC period in 26 (79%) provinces, and during the post-PMVC period in 7 (21%) provinces. At the province level, the post-PMVC period was associated with an 86% reduction (95% CI 66% to 94%, p < 0.001) in the risk of outbreak as compared to the pre-PMVC period. This negative association between exposure to PMVCs and outbreak was robustly observed across a range of sensitivity analyses, especially when using quantitative estimates of vaccination coverage as an alternative exposure measure, or when varying the observation period. In contrast, the results of the cohort-style analyses were highly sensitive to the choice of covariates included in the model. Based on the SCCS results, we estimated that PMVCs were associated with a 34% (95% CI 22% to 45%) reduction in the number of outbreaks in Africa from 2005 to 2018. A limitation of our study is the fact that it does not account for potential time-varying confounders, such as changing environmental drivers of yellow fever and possibly improved disease surveillance. CONCLUSIONS: In this study, we provide new empirical evidence of the high preventive impact of PMVCs on yellow fever outbreaks. This study illustrates that the SCCS method can be advantageously applied at the population level in order to evaluate a public health intervention.


Assuntos
Surtos de Doenças/prevenção & controle , Cobertura Vacinal/estatística & dados numéricos , Febre Amarela/epidemiologia , Febre Amarela/prevenção & controle , América , Estudos de Casos e Controles , Humanos , Programas de Imunização/métodos , Incidência
5.
PLoS Negl Trop Dis ; 15(1): e0008974, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33428623

RESUMO

In the last 20 years yellow fever (YF) has seen dramatic changes to its incidence and geographic extent, with the largest outbreaks in South America since 1940 occurring in the previously unaffected South-East Atlantic coast of Brazil in 2016-2019. While habitat fragmentation and land-cover have previously been implicated in zoonotic disease, their role in YF has not yet been examined. We examined the extent to which vegetation, land-cover, climate and host population predicted the numbers of months a location reported YF per year and by each month over the time-period. Two sets of models were assessed, one looking at interannual differences over the study period (2003-2016), and a seasonal model looking at intra-annual differences by month, averaging over the years of the study period. Each was fit using hierarchical negative-binomial regression in an exhaustive model fitting process. Within each set, the best performing models, as measured by the Akaike Information Criterion (AIC), were combined to create ensemble models to describe interannual and seasonal variation in YF. The models reproduced the spatiotemporal heterogeneities in YF transmission with coefficient of determination (R2) values of 0.43 (95% CI 0.41-0.45) for the interannual model and 0.66 (95% CI 0.64-0.67) for the seasonal model. For the interannual model, EVI, land-cover and vegetation heterogeneity were the primary contributors to the variance explained by the model, and for the seasonal model, EVI, day temperature and rainfall amplitude. Our models explain much of the spatiotemporal variation in YF in South America, both seasonally and across the period 2003-2016. Vegetation type (EVI), heterogeneity in vegetation (perhaps a proxy for habitat fragmentation) and land cover explain much of the trends in YF transmission seen. These findings may help understand the recent expansions of the YF endemic zone, as well as to the highly seasonal nature of YF.


Assuntos
Febre Amarela/transmissão , Agricultura , Clima , Humanos , Estações do Ano , América do Sul/epidemiologia , Febre Amarela/epidemiologia
6.
Lancet ; 397(10272): 398-408, 2021 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-33516338

RESUMO

BACKGROUND: The past two decades have seen expansion of childhood vaccination programmes in low-income and middle-income countries (LMICs). We quantify the health impact of these programmes by estimating the deaths and disability-adjusted life-years (DALYs) averted by vaccination against ten pathogens in 98 LMICs between 2000 and 2030. METHODS: 16 independent research groups provided model-based disease burden estimates under a range of vaccination coverage scenarios for ten pathogens: hepatitis B virus, Haemophilus influenzae type B, human papillomavirus, Japanese encephalitis, measles, Neisseria meningitidis serogroup A, Streptococcus pneumoniae, rotavirus, rubella, and yellow fever. Using standardised demographic data and vaccine coverage, the impact of vaccination programmes was determined by comparing model estimates from a no-vaccination counterfactual scenario with those from a reported and projected vaccination scenario. We present deaths and DALYs averted between 2000 and 2030 by calendar year and by annual birth cohort. FINDINGS: We estimate that vaccination of the ten selected pathogens will have averted 69 million (95% credible interval 52-88) deaths between 2000 and 2030, of which 37 million (30-48) were averted between 2000 and 2019. From 2000 to 2019, this represents a 45% (36-58) reduction in deaths compared with the counterfactual scenario of no vaccination. Most of this impact is concentrated in a reduction in mortality among children younger than 5 years (57% reduction [52-66]), most notably from measles. Over the lifetime of birth cohorts born between 2000 and 2030, we predict that 120 million (93-150) deaths will be averted by vaccination, of which 58 million (39-76) are due to measles vaccination and 38 million (25-52) are due to hepatitis B vaccination. We estimate that increases in vaccine coverage and introductions of additional vaccines will result in a 72% (59-81) reduction in lifetime mortality in the 2019 birth cohort. INTERPRETATION: Increases in vaccine coverage and the introduction of new vaccines into LMICs have had a major impact in reducing mortality. These public health gains are predicted to increase in coming decades if progress in increasing coverage is sustained. FUNDING: Gavi, the Vaccine Alliance and the Bill & Melinda Gates Foundation.


Assuntos
Controle de Doenças Transmissíveis , Doenças Transmissíveis/mortalidade , Doenças Transmissíveis/virologia , Modelos Teóricos , Mortalidade/tendências , Anos de Vida Ajustados por Qualidade de Vida , Vacinação , Pré-Escolar , Controle de Doenças Transmissíveis/economia , Controle de Doenças Transmissíveis/estatística & dados numéricos , Doenças Transmissíveis/economia , Análise Custo-Benefício , Países em Desenvolvimento , Feminino , Saúde Global , Humanos , Programas de Imunização , Masculino , Vacinação/economia , Vacinação/estatística & dados numéricos
7.
Elife ; 92020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32718436

RESUMO

Yellow Fever (YF) is an arbovirus endemic in tropical regions of South America and Africa and it is estimated to cause 78,000 deaths a year in Africa alone. Climate change may have substantial effects on the transmission of YF and we present the first analysis of the potential impact on disease burden. We extend an existing model of YF transmission to account for rainfall and a temperature suitability index and project transmission intensity across the African endemic region in the context of four climate change scenarios. We use these transmission projections to assess the change in burden in 2050 and 2070. We find disease burden changes heterogeneously across the region. In the least severe scenario, we find a 93.0%[95%CI(92.7, 93.2%)] chance that annual deaths will increase in 2050. This change in epidemiology will complicate future control efforts. Thus, we may need to consider the effect of changing climatic variables on future intervention strategies.


Assuntos
Aedes/fisiologia , Mudança Climática , Surtos de Doenças/estatística & dados numéricos , Transmissão de Doença Infecciosa/estatística & dados numéricos , Mosquitos Vetores/fisiologia , Febre Amarela/epidemiologia , Febre Amarela/transmissão , África/epidemiologia , Animais , Carga Global da Doença , Humanos
8.
PLoS Negl Trop Dis ; 14(5): e0008304, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32379756

RESUMO

BACKGROUND: To counter the increasing global risk of Yellow fever (YF), the World Health Organisation initiated the Eliminate Yellow fever Epidemics (EYE) strategy. Estimating YF burden, as well as vaccine impact, while accounting for the features of urban YF transmission such as indirect benefits of vaccination, is key to informing this strategy. METHODS AND FINDINGS: We developed two model variants to estimate YF burden in sub-Saharan Africa, assuming all infections stem from either the sylvatic or the urban cycle of the disease. Both relied on an ecological niche model fitted to the local presence of any YF reported event in 34 African countries. We calibrated under-reporting using independent estimates of transmission intensity provided by 12 serological surveys performed in 11 countries. We calculated local numbers of YF infections, deaths and disability-adjusted life years (DALYs) lost based on estimated transmission intensity while accounting for time-varying vaccination coverage. We estimated vaccine demand and impact of future preventive mass vaccination campaigns (PMVCs) according to various vaccination scenarios. Vaccination activities conducted in Africa between 2005 and 2017 were estimated to prevent from 3.3 (95% CI 1.2-7.7) to 6.1 (95% CI 2.4-13.2) millions of deaths over the lifetime of vaccinees, representing extreme scenarios of none or maximal herd effects, respectively. By prioritizing provinces based on the risk of urban YF transmission in future PMVCs, an average of 37.7 million annual doses for PMVCs over eight years would avert an estimated 9,900,000 (95% CI 7,000,000-13,400,000) infections and 480,000 (180,000-1,140,000) deaths over the lifetime of vaccinees, corresponding to 1.7 (0.7-4.1) deaths averted per 1,000 vaccine doses. CONCLUSIONS: By estimating YF burden and vaccine impact over a range of spatial and temporal scales, while accounting for the specificity of urban transmission, our model can be used to inform the current EYE strategy.


Assuntos
Efeitos Psicossociais da Doença , Transmissão de Doença Infecciosa/prevenção & controle , Epidemias/prevenção & controle , Vacina contra Febre Amarela/administração & dosagem , Febre Amarela/epidemiologia , Febre Amarela/prevenção & controle , Adolescente , Adulto , África/epidemiologia , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Métodos Epidemiológicos , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Modelos Estatísticos , Vacina contra Febre Amarela/imunologia , Adulto Jovem
9.
Parasit Vectors ; 12(1): 440, 2019 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-31522689

RESUMO

INTRODUCTION: The baseline endemicity profile of lymphatic filariasis (LF) is a key benchmark for planning control programmes, monitoring their impact on transmission and assessing the feasibility of achieving elimination. Presented in this work is the modelled serological and parasitological prevalence of LF prior to the scale-up of mass drug administration (MDA) in Nigeria using a machine learning based approach. METHODS: LF prevalence data generated by the Nigeria Lymphatic Filariasis Control Programme during country-wide mapping surveys conducted between 2000 and 2013 were used to build the models. The dataset comprised of 1103 community-level surveys based on the detection of filarial antigenemia using rapid immunochromatographic card tests (ICT) and 184 prevalence surveys testing for the presence of microfilaria (Mf) in blood. Using a suite of climate and environmental continuous gridded variables and compiled site-level prevalence data, a quantile regression forest (QRF) model was fitted for both antigenemia and microfilaraemia LF prevalence. Model predictions were projected across a continuous 5 × 5 km gridded map of Nigeria. The number of individuals potentially infected by LF prior to MDA interventions was subsequently estimated. RESULTS: Maps presented predict a heterogeneous distribution of LF antigenemia and microfilaraemia in Nigeria. The North-Central, North-West, and South-East regions displayed the highest predicted LF seroprevalence, whereas predicted Mf prevalence was highest in the southern regions. Overall, 8.7 million and 3.3 million infections were predicted for ICT and Mf, respectively. CONCLUSIONS: QRF is a machine learning-based algorithm capable of handling high-dimensional data and fitting complex relationships between response and predictor variables. Our models provide a benchmark through which the progress of ongoing LF control efforts can be monitored.


Assuntos
Filariose Linfática/epidemiologia , Topografia Médica , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Métodos Epidemiológicos , Feminino , Humanos , Imunoensaio , Aprendizado de Máquina , Masculino , Pessoa de Meia-Idade , Nigéria/epidemiologia , Parasitologia , Prevalência , Adulto Jovem
10.
PLoS Comput Biol ; 15(9): e1007355, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31545790

RESUMO

Yellow fever is a vector-borne disease endemic in tropical regions of Africa, where 90% of the global burden occurs, and Latin America. It is notoriously under-reported with uncertainty arising from a complex transmission cycle including a sylvatic reservoir and non-specific symptom set. Resulting estimates of burden, particularly in Africa, are highly uncertain. We examine two established models of yellow fever transmission within a Bayesian model averaging framework in order to assess the relative evidence for each model's assumptions and to highlight possible data gaps. Our models assume contrasting scenarios of the yellow fever transmission cycle in Africa. The first takes the force of infection in each province to be static across the observation period; this is synonymous with a constant infection pressure from the sylvatic reservoir. The second model assumes the majority of transmission results from the urban cycle; in this case, the force of infection is dynamic and defined through a fixed value of R0 in each province. Both models are coupled to a generalised linear model of yellow fever occurrence which uses environmental covariates to allow us to estimate transmission intensity in areas where data is sparse. We compare these contrasting descriptions of transmission through a Bayesian framework and trans-dimensional Markov chain Monte Carlo sampling in order to assess each model's evidence given the range of uncertainty in parameter values. The resulting estimates allow us to produce Bayesian model averaged predictions of yellow fever burden across the African endemic region. We find strong support for the static force of infection model which suggests a higher proportion of yellow fever transmission occurs as a result of infection from an external source such as the sylvatic reservoir. However, the model comparison highlights key data gaps in serological surveys across the African endemic region. As such, conclusions concerning the most prevalent transmission routes for yellow fever will be limited by the sparsity of data which is particularly evident in the areas with highest predicted transmission intensity. Our model and estimation approach provides a robust framework for model comparison and predicting yellow fever burden in Africa. However, key data gaps increase uncertainty surrounding estimates of model parameters and evidence. As more mathematical models are developed to address new research questions, it is increasingly important to compare them with established modelling approaches to highlight uncertainty in structures and data.


Assuntos
Modelos Biológicos , Febre Amarela/transmissão , Aedes/virologia , África , Animais , Teorema de Bayes , Biologia Computacional , Humanos , Modelos Estatísticos , Febre Amarela/epidemiologia , Vírus da Febre Amarela
11.
BMC Med ; 17(1): 163, 2019 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-31422772

RESUMO

BACKGROUND: Despite the increasing popularity of multi-model comparison studies and their ability to inform policy recommendations, clear guidance on how to conduct multi-model comparisons is not available. Herein, we present guidelines to provide a structured approach to comparisons of multiple models of interventions against infectious diseases. The primary target audience for these guidelines are researchers carrying out model comparison studies and policy-makers using model comparison studies to inform policy decisions. METHODS: The consensus process used for the development of the guidelines included a systematic review of existing model comparison studies on effectiveness and cost-effectiveness of vaccination, a 2-day meeting and guideline development workshop during which mathematical modellers from different disease areas critically discussed and debated the guideline content and wording, and several rounds of comments on sequential versions of the guidelines by all authors. RESULTS: The guidelines provide principles for multi-model comparisons, with specific practice statements on what modellers should do for six domains. The guidelines provide explanation and elaboration of the principles and practice statements as well as some examples to illustrate these. The principles are (1) the policy and research question - the model comparison should address a relevant, clearly defined policy question; (2) model identification and selection - the identification and selection of models for inclusion in the model comparison should be transparent and minimise selection bias; (3) harmonisation - standardisation of input data and outputs should be determined by the research question and value of the effort needed for this step; (4) exploring variability - between- and within-model variability and uncertainty should be explored; (5) presenting and pooling results - results should be presented in an appropriate way to support decision-making; and (6) interpretation - results should be interpreted to inform the policy question. CONCLUSION: These guidelines should help researchers plan, conduct and report model comparisons of infectious diseases and related interventions in a systematic and structured manner for the purpose of supporting health policy decisions. Adherence to these guidelines will contribute to greater consistency and objectivity in the approach and methods used in multi-model comparisons, and as such improve the quality of modelled evidence for policy.


Assuntos
Doenças Transmissíveis/terapia , Política de Saúde , Modelos Teóricos , Análise Custo-Benefício , Tomada de Decisões , Humanos
12.
Elife ; 82019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-31045490

RESUMO

Ten countries have reported pfhrp2/pfhrp3 gene deletions since the first observation of pfhrp2-deleted parasites in 2012. In a previous study (Watson et al., 2017), we characterised the drivers selecting for pfhrp2/3 deletions and mapped the regions in Africa with the greatest selection pressure. In February 2018, the World Health Organization issued guidance on investigating suspected false-negative rapid diagnostic tests (RDTs) due to pfhrp2/3 deletions. However, no guidance is provided regarding the timing of investigations. Failure to consider seasonal variation could cause premature decisions to switch to alternative RDTs. In response, we have extended our methods and predict that the prevalence of false-negative RDTs due to pfhrp2/3 deletions is highest when sampling from younger individuals during the beginning of the rainy season. We conclude by producing a map of the regions impacted by seasonal fluctuations in pfhrp2/3 deletions and a database identifying optimum sampling intervals to support malaria control programmes.


Assuntos
Antígenos de Protozoários/genética , Transmissão de Doença Infecciosa , Deleção de Genes , Malária Falciparum/diagnóstico , Malária Falciparum/epidemiologia , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Estações do Ano , África , Erros de Diagnóstico , Testes Diagnósticos de Rotina/métodos , Monitoramento Epidemiológico , Humanos , Malária Falciparum/transmissão , Plasmodium falciparum/isolamento & purificação , Prevalência
13.
BMC Infect Dis ; 19(1): 332, 2019 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-31014256

RESUMO

BACKGROUND: Lymphatic filariasis (LF) is a mosquito-borne parasitic disease and a major cause of disability worldwide. To effectively plan morbidity management programmes, it is important to estimate disease burden and evaluate the needs of patients. This study aimed to estimate patient numbers and characterise the physical, social and economic impact of LF in in rural Nigeria. METHODS: This is a matched cross-sectional study which identified lymphedema and hydrocele patients with the help of district health officers and community-directed distributors of mass drug administration programmes. A total of 52 cases were identified and matched to 52 apparently disease-free controls, selected from the same communities and matched by age and sex. Questionnaires and narrative interviews were used to characterise the physical, social and economic impact of lymphedema and hydrocele. RESULTS: Forty-eight cases with various stages of lower limb lymphedema, and 4 with hydrocele were identified. 40% of all cases reported feeling stigma and were 36 times (95% CI: 5.18-1564.69) more likely to avoid forms of social participation. Although most cases engaged in some form of income-generating activity, these were low paid employment, and on average cases spent significantly less time than controls working. The economic effects of lower income were exacerbated by increased healthcare spending, as cases were 86 times (95% CI: 17.48-874.90) more likely to spend over US $125 on their last healthcare payment. CONCLUSION: This study highlights the importance of patient-search as a means of estimating the burden of LF morbidity in rural settings. Findings from this work also confirm that LF causes considerable psychosocial and economic suffering, all of which adversely affect the mental health of patients. It is therefore important to incorporate mental health care as a major component of morbidity management programmes.


Assuntos
Filariose Linfática/patologia , Linfedema/patologia , Adulto , Estudos Transversais , Filariose Linfática/tratamento farmacológico , Filariose Linfática/economia , Feminino , Humanos , Renda , Entrevistas como Assunto , Linfedema/tratamento farmacológico , Linfedema/economia , Masculino , Saúde Mental , Pessoa de Meia-Idade , Nigéria , População Rural , Índice de Gravidade de Doença , Estigma Social , Inquéritos e Questionários , Adulto Jovem
14.
Vaccine ; 37(11): 1384-1388, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30770224

RESUMO

Recent yellow fever (YF) outbreaks have highlighted the increasing global risk of urban spread of the disease. In context of recurrent vaccine shortages, preventive vaccination activities require accurate estimates of existing population-level immunity. We present POLICI (POpulation-Level Immunization Coverage - Imperial), an interactive online tool for visualising and extracting YF vaccination coverage estimates in Africa. We calculated single year age-disaggregated sub-national population-level vaccination coverage for 1950-2050 across the African endemic zone by collating vaccination information and inputting it into a demographic model. This was then implemented on an open interactive web platform. POLICI interactively displays age-disaggregated, population-level vaccination coverages at the first subnational administrative level, through numerous downloadable and customisable visualisations. POLICI is available at https://polici.shinyapps.io/yellow_fever_africa/. POLICI offers an accessible platform for relevant stakeholders in global health to access and explore vaccination coverages. These estimates have already been used to inform the WHO strategy to Eliminate Yellow fever Epidemics (EYE).


Assuntos
Aplicativos Móveis , Cobertura Vacinal/métodos , Cobertura Vacinal/estatística & dados numéricos , Vacina contra Febre Amarela/administração & dosagem , Febre Amarela/prevenção & controle , África/epidemiologia , Benin/epidemiologia , Surtos de Doenças/prevenção & controle , Saúde Global , Humanos , Febre Amarela/epidemiologia
15.
Sci Rep ; 9(1): 20420, 2019 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-31892703

RESUMO

Southeast Brazil has experienced two large yellow fever (YF) outbreaks since 2016. While the 2016-2017 outbreak mainly affected the states of Espírito Santo and Minas Gerais, the 2017-2018 YF outbreak primarily involved the states of Minas Gerais, São Paulo, and Rio de Janeiro, the latter two of which are highly populated and popular destinations for international travelers. This analysis quantifies the risk of YF virus (YFV) infected travelers arriving in the United States via air travel from Brazil, including both incoming Brazilian travelers and returning US travelers. We assumed that US travelers were subject to the same daily risk of YF infection as Brazilian residents. During both YF outbreaks in Southeast Brazil, three international airports-Miami, New York-John F. Kennedy, and Orlando-had the highest risk of receiving a traveler infected with YFV. Most of the risk was observed among incoming Brazilian travelers. Overall, we found low risk of YFV introduction into the United States during the 2016-2017 and 2017-2018 outbreaks. Decision makers can use these results to employ the most efficient and least restrictive actions and interventions.


Assuntos
Viagem Aérea , Surtos de Doenças , Doença Relacionada a Viagens , Febre Amarela/epidemiologia , Vírus da Febre Amarela , Brasil/epidemiologia , Humanos , Fatores de Risco , Estados Unidos/epidemiologia
16.
PLoS Comput Biol ; 14(12): e1006554, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30557340

RESUMO

Early assessment of infectious disease outbreaks is key to implementing timely and effective control measures. In particular, rapidly recognising whether infected individuals stem from a single outbreak sustained by local transmission, or from repeated introductions, is crucial to adopt effective interventions. In this study, we introduce a new framework for combining several data streams, e.g. temporal, spatial and genetic data, to identify clusters of related cases of an infectious disease. Our method explicitly accounts for underreporting, and allows incorporating preexisting information about the disease, such as its serial interval, spatial kernel, and mutation rate. We define, for each data stream, a graph connecting all cases, with edges weighted by the corresponding pairwise distance between cases. Each graph is then pruned by removing distances greater than a given cutoff, defined based on preexisting information on the disease and assumptions on the reporting rate. The pruned graphs corresponding to different data streams are then merged by intersection to combine all data types; connected components define clusters of cases related for all types of data. Estimates of the reproduction number (the average number of secondary cases infected by an infectious individual in a large population), and the rate of importation of the disease into the population, are also derived. We test our approach on simulated data and illustrate it using data on dog rabies in Central African Republic. We show that the outbreak clusters identified using our method are consistent with structures previously identified by more complex, computationally intensive approaches.


Assuntos
Doenças Transmissíveis/epidemiologia , Raiva/epidemiologia , Animais , Análise por Conglomerados , Surtos de Doenças/classificação , Surtos de Doenças/veterinária , Cães , Tempo
17.
Parasit Vectors ; 11(1): 513, 2018 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-30223860

RESUMO

BACKGROUND: Lymphatic filariasis (LF) is a mosquito-borne parasitic disease and a major cause of disability worldwide. It is one of the neglected tropical diseases identified by the World Health Organization for elimination as a public health problem by 2020. Maps displaying disease distribution are helpful tools to identify high-risk areas and target scarce control resources. METHODS: We used pre-intervention site-level occurrence data from 1192 survey sites collected during extensive mapping surveys by the Nigeria Ministry of Health. Using an ensemble of machine learning modelling algorithms (generalised boosted models and random forest), we mapped the ecological niche of LF at a spatial resolution of 1 km2. By overlaying gridded estimates of population density, we estimated the human population living in LF risk areas on a 100 × 100 m scale. RESULTS: Our maps demonstrate that there is a heterogeneous distribution of LF risk areas across Nigeria, with large portions of northern Nigeria having more environmentally suitable conditions for the occurrence of LF. Here we estimated that approximately 110 million individuals live in areas at risk of LF transmission. CONCLUSIONS: Machine learning and ensemble modelling are powerful tools to map disease risk and are known to yield more accurate predictive models with less uncertainty than single models. The resulting map provides a geographical framework to target control efforts and assess its potential impacts.


Assuntos
Algoritmos , Filariose Linfática/epidemiologia , Modelos Teóricos , Meio Ambiente , Feminino , Humanos , Aprendizado de Máquina , Masculino , Nigéria/epidemiologia , Densidade Demográfica , Saúde Pública , Risco , Análise Espacial
18.
PLoS Negl Trop Dis ; 12(3): e0006284, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29543798

RESUMO

BACKGROUND: Yellow fever virus (YFV) is a vector-borne flavivirus endemic to Africa and Latin America. Ninety per cent of the global burden occurs in Africa where it is primarily transmitted by Aedes spp, with Aedes aegypti the main vector for urban yellow fever (YF). Mosquito life cycle and viral replication in the mosquito are heavily dependent on climate, particularly temperature and rainfall. We aimed to assess whether seasonal variations in climatic factors are associated with the seasonality of YF reports. METHODOLOGY/PRINCIPAL FINDINGS: We constructed a temperature suitability index for YFV transmission, capturing the temperature dependence of mosquito behaviour and viral replication within the mosquito. We then fitted a series of multilevel logistic regression models to a dataset of YF reports across Africa, considering location and seasonality of occurrence for seasonal models, against the temperature suitability index, rainfall and the Enhanced Vegetation Index (EVI) as covariates alongside further demographic indicators. Model fit was assessed by the Area Under the Curve (AUC), and models were ranked by Akaike's Information Criterion which was used to weight model outputs to create combined model predictions. The seasonal model accurately captured both the geographic and temporal heterogeneities in YF transmission (AUC = 0.81), and did not perform significantly worse than the annual model which only captured the geographic distribution. The interaction between temperature suitability and rainfall accounted for much of the occurrence of YF, which offers a statistical explanation for the spatio-temporal variability in transmission. CONCLUSIONS/SIGNIFICANCE: The description of seasonality offers an explanation for heterogeneities in the West-East YF burden across Africa. Annual climatic variables may indicate a transmission suitability not always reflected in seasonal interactions. This finding, in conjunction with forecasted data, could highlight areas of increased transmission and provide insights into the occurrence of large outbreaks, such as those seen in Angola, the Democratic Republic of the Congo and Brazil.


Assuntos
Clima , Meio Ambiente , Estações do Ano , Febre Amarela/transmissão , Vírus da Febre Amarela/fisiologia , Aedes/fisiologia , Aedes/virologia , Angola/epidemiologia , Animais , Brasil/epidemiologia , República Democrática do Congo/epidemiologia , Surtos de Doenças , Humanos , Mosquitos Vetores/fisiologia , Mosquitos Vetores/virologia , Temperatura , Replicação Viral , Febre Amarela/epidemiologia , Febre Amarela/virologia , Vírus da Febre Amarela/isolamento & purificação
19.
Health Aff (Millwood) ; 37(2): 316-324, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29401021

RESUMO

With social policies increasingly directed toward enhancing equity through health programs, it is important that methods for estimating the health and economic benefits of these programs by subpopulation be developed, to assess both equity concerns and the programs' total impact. We estimated the differential health impact (measured as the number of deaths averted) and household economic impact (measured as the number of cases of medical impoverishment averted) of ten antigens and their corresponding vaccines across income quintiles for forty-one low- and middle-income countries. Our analysis indicated that benefits across these vaccines would accrue predominantly in the lowest income quintiles. Policy makers should be informed about the large health and economic distributional impact that vaccines could have, and they should view vaccination policies as potentially important channels for improving health equity. Our results provide insight into the distribution of vaccine-preventable diseases and the health benefits associated with their prevention.


Assuntos
Análise Custo-Benefício , Saúde Global , Equidade em Saúde/economia , Programas de Imunização/estatística & dados numéricos , Mortalidade/tendências , Vacinação/estatística & dados numéricos , Vacinas/economia , Saúde da Criança/normas , Países em Desenvolvimento , Gastos em Saúde , Humanos , Programas de Imunização/economia , Anos de Vida Ajustados por Qualidade de Vida , Vacinação/economia
20.
Epidemics ; 22: 29-35, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28351674

RESUMO

Outbreaks of novel pathogens such as SARS, pandemic influenza and Ebola require substantial investments in reactive interventions, with consequent implementation plans sometimes revised on a weekly basis. Therefore, short-term forecasts of incidence are often of high priority. In light of the recent Ebola epidemic in West Africa, a forecasting exercise was convened by a network of infectious disease modellers. The challenge was to forecast unseen "future" simulated data for four different scenarios at five different time points. In a similar method to that used during the recent Ebola epidemic, we estimated current levels of transmissibility, over variable time-windows chosen in an ad hoc way. Current estimated transmissibility was then used to forecast near-future incidence. We performed well within the challenge and often produced accurate forecasts. A retrospective analysis showed that our subjective method for deciding on the window of time with which to estimate transmissibility often resulted in the optimal choice. However, when near-future trends deviated substantially from exponential patterns, the accuracy of our forecasts was reduced. This exercise highlights the urgent need for infectious disease modellers to develop more robust descriptions of processes - other than the widespread depletion of susceptible individuals - that produce non-exponential patterns of incidence.


Assuntos
Doenças Transmissíveis/epidemiologia , Doenças Transmissíveis/transmissão , Epidemias/estatística & dados numéricos , Previsões , Humanos , Incidência , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...