Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Exp Biol ; 227(20)2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39045710

RESUMO

Aerobic metabolism underlies vital traits such as locomotion and thermogenesis, and aerobic capacity influences fitness in many animals. The heart is a key determinant of aerobic capacity, but the relative influence of cardiac output versus other steps in the O2 transport pathway remains contentious. In this Commentary, we consider this issue by examining the mechanistic basis for adaptive increases in aerobic capacity (thermogenic V̇O2,max; also called summit metabolism) in deer mice (Peromyscus maniculatus) native to high altitude. Thermogenic V̇O2,max is increased by acclimation to cold hypoxia (simulating high-altitude conditions), and high-altitude populations generally have greater V̇O2,max than their low-altitude counterparts. This plastic and evolved variation in V̇O2,max is associated with corresponding variation in maximal cardiac output, along with variation in other traits across the O2 pathway (e.g. arterial O2 saturation, blood haemoglobin content and O2 affinity, tissue O2 extraction, tissue oxidative capacity). By applying fundamental principles of gas exchange, we show that the relative influence of cardiac output on V̇O2,max depends on the O2 diffusing capacity of thermogenic tissues (skeletal muscles and brown adipose tissues). Functional interactions between cardiac output and blood haemoglobin content determine circulatory O2 delivery and thus affect V̇O2,max, particularly in high-altitude environments where erythropoiesis can increase haematocrit and blood viscosity. There may also be functional linkages between cardiac output and tissue O2 diffusion due to the role of blood flow in determining capillary haematocrit and red blood cell flux. Therefore, the functional interactions between cardiac output and other traits in the O2 pathway underlie the adaptive evolution of aerobic capacities.


Assuntos
Evolução Biológica , Débito Cardíaco , Coração , Peromyscus , Animais , Peromyscus/fisiologia , Coração/fisiologia , Débito Cardíaco/fisiologia , Altitude , Aclimatação/fisiologia , Consumo de Oxigênio/fisiologia , Termogênese/fisiologia , Oxigênio/metabolismo , Aerobiose
2.
J Exp Biol ; 226(1)2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36484145

RESUMO

The hypoxic ventilatory response (HVR) in fish is an important reflex that aids O2 uptake when low environmental O2 levels constrain diffusion. In developing zebrafish (Danio rerio), the acute HVR is multiphasic, consisting of a rapid increase in ventilation frequency (fV) during hypoxia onset, followed by a decline to a stable plateau phase above fV under normoxic conditions. In this study, we examined the potential role of catecholamines in contributing to each of these phases of the dynamic HVR in zebrafish larvae. We showed that adrenaline elicits a dose-dependent ß-adrenoreceptor (AR)-mediated increase in fV that does not require expression of ß1-ARs, as the hyperventilatory response to ß-AR stimulation was unaltered in adrb1-/- mutants, generated by CRISPR/Cas9 knockout. In response to hypoxia and propranolol co-treatment, the magnitude of the rapidly occurring peak increase in fV during hypoxia onset was attenuated (112±14 breaths min-1 without propranolol to 68±17 breaths min-1 with propranolol), whereas the increased fV during the stable phase of the HVR was prevented in both wild type and adrb1-/- mutants. Thus, ß1-AR is not required for the HVR and other ß-ARs, although not required for initiation of the HVR, are involved in setting the maximal increase in fV and in maintaining hyperventilation during continued hypoxia. This adrenergic modulation of the HVR may arise from centrally released catecholamines because adrenaline exposure failed to activate (based on intracellular Ca2+ levels) cranial nerves IX and X, which transmit O2 signals from the pharyngeal arch to the central nervous system.


Assuntos
Catecolaminas , Peixe-Zebra , Animais , Peixe-Zebra/fisiologia , Catecolaminas/metabolismo , Larva/metabolismo , Propranolol/metabolismo , Hipóxia , Receptores Adrenérgicos beta/metabolismo , Epinefrina/farmacologia
3.
Acta Physiol (Oxf) ; 235(4): e13849, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35665450

RESUMO

AIM: Although zebrafish are gaining popularity as biomedical models of cardiovascular disease, our understanding of their cardiac control mechanisms is fragmentary. Our goal was to clarify the controversial role of the ß1-adrenergic receptor (AR) in the regulation of heart rate in zebrafish. METHODS: CRISPR-Cas9 was used to delete the adrb1 gene in zebrafish allowing us to generate a stable adrb1-/- line. Larval heart rates were measured during pharmacological protocols and with exposure to hypercapnia. Expression of the five zebrafish adrb genes were measured in larval zebrafish hearts using qPCR. RESULTS: Compared with genetically matched wild-types (adrb1+/+ ), adrb1-/- larvae exhibited ~20 beats min-1 lower heart rate, measured from 2 to 21 days post-fertilization (dpf). Nevertheless, adrb1-/- larvae exhibited preserved positive chronotropic responses to pharmacological treatment with AR agonists (adrenaline, noradrenaline, isoproterenol), which were blocked by propranolol (general ß-AR antagonist). Regardless of genotype, larvae exhibited similar increases in heart rate in response to hypercapnia (1% CO2 ) at 5 dpf, but tachycardia was blunted in adrb1-/- larvae at 6 dpf. adrb1 gene expression was abolished in the hearts of adrb1-/- larvae, confirming successful knockout. While gene expression of adrb2a and adrb3a was unchanged, adrb2b and adrb3b mRNA levels increased in adrb1-/- larval hearts. CONCLUSION: Despite adrb1 contributing to the setting of resting heart rate in larvae, it is not strictly essential for zebrafish, as we generated a viable and breeding adrb1-/- line. The chronotropic effects of adrenergic stimulation persist in adrb1-/- zebrafish, likely due to the upregulation of other ß-AR subtypes.


Assuntos
Hipercapnia , Peixe-Zebra , Animais , Coração , Frequência Cardíaca/fisiologia , Larva/genética , Larva/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA