Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mar Environ Res ; 167: 105286, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33677173

RESUMO

The biochemical composition and fluorescence properties of DOM were assessed in relation to phytoplankton and major aquatic bacterial clades in a regenerative area of the Argentine Shelf. DOM was mainly of autochthonous biological origin, containing humic- and protein-like substances of medium degree of unsaturation and diagenesis. Biochemical-DOM accounted for 25% of total DOC, being dissolved combined amino acids (DCAA) the dominant fraction followed by free carbohydrates. Phytoplankton was the main source of serine, alanine, and valine, and particulate carbohydrates. Gammaproteobacteria abundance correlated negatively with ammonium and positively with DCAA, suggesting a coupling between ammonium consumption and refractory amino acid production. A preferential utilization of alanine, leucine and threonine as nitrogen source was inferred from the distribution of Cytophaga-Flavobacteria-Bacteroidete in relation with dissolved free amino acids (DFAA). Notably, Alpha- and Betaproteobacteria correlated with the large pool (75%) of chemically unidentified DOC and not with DCAA or dissolved combined carbohydrates. Particularly, Alphaproteobacteria (∼40% of EUB total heterotrophic bacteria) either significantly contribute to the production of the "humic", refractory fraction of marine DOM, or the latter impairs resource control on their abundance. Spatial heterogeneity inherent to coastal-shelf areas drives important regional variability in the biochemical properties of DOM.


Assuntos
Carbono , Substâncias Húmicas , Bactérias , Substâncias Húmicas/análise , Nitrogênio/análise , Fitoplâncton
2.
Mar Pollut Bull ; 91(2): 554-62, 2015 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-25194878

RESUMO

The aims of this work are to provide an overview of the current stresses of estuaries in Argentina and to propose adaptation strategies from an ecohydrological approach. Several Argentinian estuaries are impacted by pollutants, derived mainly from sewage discharge and agricultural or industrial activities. Anthropogenic impacts are expected to rise with increasing human population. Climate-driven warmer temperature and hydrological changes will alter stratification, residence time, oxygen content, salinity, pollutant distribution, organism physiology and ecology, and nutrient dynamics. Good water quality is essential in enhancing estuarine ecological resilience to disturbances brought on by global change. The preservation, restoration, and creation of wetlands will help to protect the coast from erosion, increase sediment accretion rates, and improve water quality by removing excess nutrients and pollutants. The capacity of hydrologic basin ecosystems to absorb human and natural impacts can be improved through holistic management, which should consider social vulnerability in complex human-natural systems.


Assuntos
Ecossistema , Estuários , Qualidade da Água , Agricultura , Argentina , Clima , Mudança Climática , Humanos , Oxigênio/análise , Salinidade , Esgotos , Poluentes da Água/análise , Áreas Alagadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA