RESUMO
Since the first introduction from North America more than a century ago, rainbow trout (Oncorhynchus mykiss) have rapidly established self-sustaining populations in major river basins of Patagonia. Many generations later, only the freshwater resident life history is expressed in the Chubut and Negro rivers of northern Argentinian Patagonia, whereas both the resident and anadromous life histories are found in the Santa Cruz River of southern Argentina. Despite previous studies that have tried to identify the sources of these introduced populations, uncertainty still exists. Here we combined data from many single-nucleotide polymorphisms and microsatellite loci in O. mykiss populations from Argentina and North America to evaluate putative source populations, gene flow between Argentinian river basins, and genetic diversity differences between Argentinian and North American populations. We found that populations from northern and southern Patagonia are highly differentiated and have limited gene flow between them. Phylogeographic analysis also confirmed that they have separate origins, with the northern populations most closely related to the domesticated rainbow trout strains that are raised worldwide and the Santa Cruz River populations most closely related to North American populations from California and Oregon that have an anadromous component. In addition, fish with different life histories in the Santa Cruz River were found to constitute a single interbreeding population. No evidence was found of reduced genetic variation in introduced rainbow trout, suggesting multiple contributing sources. In spite of these advances in understanding, significant questions remain regarding the origins and evolution of the introduced O. mykiss in Patagonia.
Assuntos
Fluxo Gênico , Variação Genética , Repetições de Microssatélites , Oncorhynchus mykiss , Polimorfismo de Nucleotídeo Único , Animais , Oncorhynchus mykiss/genética , Argentina , Rios , Filogeografia , Genética PopulacionalRESUMO
The northern elephant seal, Mirounga angustirostris, was heavily hunted and declared extinct in the 19th century. However, a colony remained on remote Guadalupe Island, Mexico and the species has since repopulated most of its historical distribution. Here, we present a comprehensive evaluation of genetic variation in the species. First, we assess the effect of the demographic bottleneck on microsatellite variability and compare it with that found in other pinnipeds, demonstrating levels of variation similar to that in species that continue to be threatened with extinction. Next, we use sequence data from these markers to demonstrate that some of the limited polymorphism predates the bottleneck. However, most contemporary variation appears to have arisen recently and persisted due to exponential growth. We also describe how we use the range in allele size of microsatellites to estimate ancestral effective population size before the bottleneck, demonstrating a large reduction in effective size. We then employ a classical method for bacteria to estimate the microsatellite mutation rate in the species, deriving an estimate that is extremely similar to that estimated for a similar set of loci in humans, indicating consistency of microsatellite mutation rates in mammals. Finally, we find slight significant structure between some geographically separated colonies, although its biological significance is unclear. This work demonstrates that genetic analysis can be useful for evaluating the population biology of the northern elephant seal, in spite of the bottleneck that removed most genetic variation from the species.
Assuntos
Variação Genética , Genética Populacional , Focas Verdadeiras/genética , Alelos , Animais , Sequência de Bases , California , Frequência do Gene , México , Repetições de Microssatélites , Taxa de Mutação , Densidade Demográfica , Análise de Sequência de DNARESUMO
Salmonid fishes are cold water piscivores with a native distribution spanning nearly the entire temperate and subarctic northern hemisphere. Trout in the genus Oncorhynchus are the most widespread salmonid fishes and are among the most important fish species in the world, due to their extensive use in aquaculture and valuable fisheries. Trout that inhabit northwestern Mexico are the southernmost native salmonid populations in the world, and the least studied in North America. They are unfortunately also facing threats to their continued existence. Previous work has described one endemic species, the Mexican golden trout (O. chrysogaster), and one endemic subspecies, Nelson's trout (O. mykiss nelsoni), in Mexico, but previous work indicated that there is vastly more biodiversity in this group than formally described. Here we conducted a comprehensive genetic analysis of this important group of fishes using novel genetic markers and techniques to elucidate the biodiversity of trout inhabiting northwestern Mexico, examine genetic population structure of Mexican trout and their relationships to other species of Pacific trout, and measure introgression from non-native hatchery rainbow trout. We confirmed substantial genetic diversity and extremely strong genetic differentiation present in the Mexican trout complex, not only between basins but also between some locations within basins, with at least four species-level taxa present. We also revealed significant divergence between Mexican trout and other trout species and found that introgression from non-native rainbow trout is present but limited, and that the genetic integrity of native trout is still maintained in most locations. This information will help to guide effective conservation strategies for this important group of fishes.
Assuntos
Genética Populacional , Truta/genética , Animais , Análise por Conglomerados , Frequência do Gene , Variação Genética , Geografia , Heterozigoto , México , Repetições de Microssatélites , Polimorfismo de Nucleotídeo Único , Truta/classificaçãoRESUMO
Rockfishes of the genus Sebastes are extensively distributed in the Pacific and Atlantic oceans. Although the occurrence of two morphologically similar species in the Southern Hemisphere, Sebastes oculatus and Sebastes capensis, is now clearly established, the taxonomic status and phylogeographic patterns for the genus in the region have not yet been completely resolved. In this study, we provide new insights into the taxonomy and evolutionary relationships of rockfishes inhabiting the Southwestern Atlantic Ocean, off the coast of mainland Argentina, by combining mitochondrial DNA (mtDNA) control region sequences, microsatellite data, and color pattern analyses. Differences in coloration ("dark" and "light" fish) together with bathymetric segregation between color morphotypes were evident from fish collection and literature review. In addition, the mtDNA phylogenetic analysis and Bayesian clustering analysis using microsatellite data separated the fish into two distinct groups (F ST = 0.041), most likely representing incipient species. Our results suggest that speciation-by-depth in the absence of physical barriers could be a widespread mechanism of speciation in Sebastes from both the Northern and Southern Hemispheres. Nevertheless, the degree of genetic differentiation found, added to the large number of individuals displaying high levels of admixture, points to the occurrence of incomplete reproductive barriers between color morphotypes. Beyond the taxonomic and phylogeographic implications of our findings, the occurrence of distinct groups of Sebastes off the coast of Argentina being targeted by different fisheries (angling and trawling) has consequences for the design and implementation of appropriate fishery regulations to avoid overharvest of either group.
Assuntos
Peixes/anatomia & histologia , Peixes/classificação , Filogenia , Pigmentação , Animais , Argentina , DNA Mitocondrial/genética , Peixes/genética , Especiação Genética , Variação Genética , Repetições de Microssatélites/genética , Dados de Sequência Molecular , Especificidade da EspécieRESUMO
Among tuco-tucos, Ctenomys rionegrensis is especially amenable to the study of the forces driving population differentiation because of the restricted geographic range it occupies in Uruguay. Within this limited area, the Rio Negro tuco-tuco is limited to sandy soils. It nonetheless exhibits remarkable variation in pelage color, including melanic, agouti, and dark-backed individuals. Two hypotheses have been put forth to explain this pattern: (1) local differentiation and fixation of alternative pelage types by genetic drift under limited gene flow; or (2) fixation by natural selection that may take place even in the presence of gene flow. A previous allozyme study rejected the genetic drift hypothesis on the basis of high inferred levels of migration. New estimates of gene flow from microsatellites and mitochondrial cytochrome b sequences were obtained for C. rionegrensis populations to further test these hypotheses. Much lower levels of gene flow were estimated with these more sensitive markers. Microsatellite-based estimates of gene flow are close to zero and may come closest to estimating current levels of migration. A lack of equilibrium between migration and genetic drift is also strongly suggested by the absence of an isolation-by-distance pattern found in all three genetic datasets. The microsatellite genotype data show that the species is strongly structured geographically, with subpopulations constituting distinct genetic entities. If current levels of gene flow are very low, as indicated by the new data, the local fixation of alternative alleles, including those responsible for pelage color polymorphism, is possible by drift alone. A scenario is thus proposed in which the species expanded in the recent past from a more restricted geographic range and has subsequently differentiated in near isolation, with genetic drift possibly playing a primary role in overall genetic differentiation. The local fixation of pelage color types could also be due to drift, but selection on this trait cannot be ruled out without direct analysis.